Self-organized solid-state synthetic neuronal structure
A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface suppo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chaker, Mohamed Lepage, Dominic |
description | A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10664747B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10664747B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10664747B23</originalsourceid><addsrcrecordid>eNrjZDAPTs1J080vSk_My6xKTVEozs_JTNEtLkksSVUorswryUgtyUxWyEstLcrPS8xRKC4pKk0uKS1K5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgZmZibmJuZORsbEqAEAKwgu6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-organized solid-state synthetic neuronal structure</title><source>esp@cenet</source><creator>Chaker, Mohamed ; Lepage, Dominic</creator><creatorcontrib>Chaker, Mohamed ; Lepage, Dominic</creatorcontrib><description>A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200526&DB=EPODOC&CC=US&NR=10664747B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200526&DB=EPODOC&CC=US&NR=10664747B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chaker, Mohamed</creatorcontrib><creatorcontrib>Lepage, Dominic</creatorcontrib><title>Self-organized solid-state synthetic neuronal structure</title><description>A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPTs1J080vSk_My6xKTVEozs_JTNEtLkksSVUorswryUgtyUxWyEstLcrPS8xRKC4pKk0uKS1K5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgZmZibmJuZORsbEqAEAKwgu6w</recordid><startdate>20200526</startdate><enddate>20200526</enddate><creator>Chaker, Mohamed</creator><creator>Lepage, Dominic</creator><scope>EVB</scope></search><sort><creationdate>20200526</creationdate><title>Self-organized solid-state synthetic neuronal structure</title><author>Chaker, Mohamed ; Lepage, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10664747B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaker, Mohamed</creatorcontrib><creatorcontrib>Lepage, Dominic</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaker, Mohamed</au><au>Lepage, Dominic</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-organized solid-state synthetic neuronal structure</title><date>2020-05-26</date><risdate>2020</risdate><abstract>A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10664747B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Self-organized solid-state synthetic neuronal structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chaker,%20Mohamed&rft.date=2020-05-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10664747B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |