Self-organized solid-state synthetic neuronal structure

A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface suppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chaker, Mohamed, Lepage, Dominic
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chaker, Mohamed
Lepage, Dominic
description A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10664747B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10664747B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10664747B23</originalsourceid><addsrcrecordid>eNrjZDAPTs1J080vSk_My6xKTVEozs_JTNEtLkksSVUorswryUgtyUxWyEstLcrPS8xRKC4pKk0uKS1K5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgZmZibmJuZORsbEqAEAKwgu6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-organized solid-state synthetic neuronal structure</title><source>esp@cenet</source><creator>Chaker, Mohamed ; Lepage, Dominic</creator><creatorcontrib>Chaker, Mohamed ; Lepage, Dominic</creatorcontrib><description>A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200526&amp;DB=EPODOC&amp;CC=US&amp;NR=10664747B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200526&amp;DB=EPODOC&amp;CC=US&amp;NR=10664747B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chaker, Mohamed</creatorcontrib><creatorcontrib>Lepage, Dominic</creatorcontrib><title>Self-organized solid-state synthetic neuronal structure</title><description>A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPTs1J080vSk_My6xKTVEozs_JTNEtLkksSVUorswryUgtyUxWyEstLcrPS8xRKC4pKk0uKS1K5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhgZmZibmJuZORsbEqAEAKwgu6w</recordid><startdate>20200526</startdate><enddate>20200526</enddate><creator>Chaker, Mohamed</creator><creator>Lepage, Dominic</creator><scope>EVB</scope></search><sort><creationdate>20200526</creationdate><title>Self-organized solid-state synthetic neuronal structure</title><author>Chaker, Mohamed ; Lepage, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10664747B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaker, Mohamed</creatorcontrib><creatorcontrib>Lepage, Dominic</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaker, Mohamed</au><au>Lepage, Dominic</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-organized solid-state synthetic neuronal structure</title><date>2020-05-26</date><risdate>2020</risdate><abstract>A synthetic neuronal structure makes use of a semiconductor-metal phase transition material having material regions separated by discontinuities. The discontinuities represent interfaces such that different phases in two adjacent regions result in a metal-semiconductor interface. The interface supports a charge accumulation and a discharge of accumulated charge when an activation energy provided, for example, by electrical current, localized heating or optical energy, reaches a threshold necessary for breakdown of a potential barrier presented by the interface, and thus mimics a leaky integrate-and-fire neuron. With many such interfaces distributed through the structure, the local inputs to a neuron become a weighted sum of energy from neighboring neurons. Thus, different combinations of signals at one or more inputs connected to the structure will favor different neural pathways through the structure, thereby resulting in a neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10664747B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Self-organized solid-state synthetic neuronal structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chaker,%20Mohamed&rft.date=2020-05-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10664747B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true