Multi-block sputtering target with interface portions and associated methods and articles
A sputtering target that includes at least two consolidated blocks, each block including an alloy including a first metal (e.g., a refractory metal such as molybdenum in an amount greater than about 30 percent by weight) and at least one additional alloying ingredient; and a joint between the at lea...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Michaluk, Christopher Rozak, Gary Alan Gaydos, Mark E |
description | A sputtering target that includes at least two consolidated blocks, each block including an alloy including a first metal (e.g., a refractory metal such as molybdenum in an amount greater than about 30 percent by weight) and at least one additional alloying ingredient; and a joint between the at least two consolidated blocks, the joint being prepared free of any microstructure derived from a diffusion bond of an added loose powder. A process for making the target includes hot isostatically pressing (e.g., below a temperature of 1080° C.), consolidated preform blocks that, prior to pressing, have interposed between the consolidated powder metal blocks at least one continuous solid interface portion. The at least one continuous solid interface portion may include a cold spray body, which may be a mass of cold spray deposited powders on a surface a block, a sintered preform, a compacted powder body (e.g., a tile), or any combination thereof. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10643827B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10643827B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10643827B23</originalsourceid><addsrcrecordid>eNqNjDEOwjAMALswIOAP5gGVoEXADAKxMAEDU2USt7UISRS74vtk6AOYTjqdblo8r4NTLl8umDdIHFQpse9AMXWk8GXtgX2WLRqCGJJy8ALoLaBIMIxKFj6kfbCjzolxJPNi0qITWoycFcvz6X68lBRDQxLzz5M2j9t6td3U-2p3qOp_mh9LszuN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-block sputtering target with interface portions and associated methods and articles</title><source>esp@cenet</source><creator>Michaluk, Christopher ; Rozak, Gary Alan ; Gaydos, Mark E</creator><creatorcontrib>Michaluk, Christopher ; Rozak, Gary Alan ; Gaydos, Mark E</creatorcontrib><description>A sputtering target that includes at least two consolidated blocks, each block including an alloy including a first metal (e.g., a refractory metal such as molybdenum in an amount greater than about 30 percent by weight) and at least one additional alloying ingredient; and a joint between the at least two consolidated blocks, the joint being prepared free of any microstructure derived from a diffusion bond of an added loose powder. A process for making the target includes hot isostatically pressing (e.g., below a temperature of 1080° C.), consolidated preform blocks that, prior to pressing, have interposed between the consolidated powder metal blocks at least one continuous solid interface portion. The at least one continuous solid interface portion may include a cold spray body, which may be a mass of cold spray deposited powders on a surface a block, a sintered preform, a compacted powder body (e.g., a tile), or any combination thereof.</description><language>eng</language><subject>ALLOYS ; BASIC ELECTRIC ELEMENTS ; CASTING ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS ; ELECTRICITY ; FERROUS OR NON-FERROUS ALLOYS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; MAKING METALLIC POWDER ; MANUFACTURE OF ARTICLES FROM METALLIC POWDER ; METALLURGY ; PERFORMING OPERATIONS ; POWDER METALLURGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING ; TREATMENT OF ALLOYS OR NON-FERROUS METALS ; WORKING METALLIC POWDER</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200505&DB=EPODOC&CC=US&NR=10643827B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200505&DB=EPODOC&CC=US&NR=10643827B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Michaluk, Christopher</creatorcontrib><creatorcontrib>Rozak, Gary Alan</creatorcontrib><creatorcontrib>Gaydos, Mark E</creatorcontrib><title>Multi-block sputtering target with interface portions and associated methods and articles</title><description>A sputtering target that includes at least two consolidated blocks, each block including an alloy including a first metal (e.g., a refractory metal such as molybdenum in an amount greater than about 30 percent by weight) and at least one additional alloying ingredient; and a joint between the at least two consolidated blocks, the joint being prepared free of any microstructure derived from a diffusion bond of an added loose powder. A process for making the target includes hot isostatically pressing (e.g., below a temperature of 1080° C.), consolidated preform blocks that, prior to pressing, have interposed between the consolidated powder metal blocks at least one continuous solid interface portion. The at least one continuous solid interface portion may include a cold spray body, which may be a mass of cold spray deposited powders on a surface a block, a sintered preform, a compacted powder body (e.g., a tile), or any combination thereof.</description><subject>ALLOYS</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CASTING</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</subject><subject>ELECTRICITY</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>MAKING METALLIC POWDER</subject><subject>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</subject><subject>METALLURGY</subject><subject>PERFORMING OPERATIONS</subject><subject>POWDER METALLURGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><subject>WORKING METALLIC POWDER</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAMALswIOAP5gGVoEXADAKxMAEDU2USt7UISRS74vtk6AOYTjqdblo8r4NTLl8umDdIHFQpse9AMXWk8GXtgX2WLRqCGJJy8ALoLaBIMIxKFj6kfbCjzolxJPNi0qITWoycFcvz6X68lBRDQxLzz5M2j9t6td3U-2p3qOp_mh9LszuN</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Michaluk, Christopher</creator><creator>Rozak, Gary Alan</creator><creator>Gaydos, Mark E</creator><scope>EVB</scope></search><sort><creationdate>20200505</creationdate><title>Multi-block sputtering target with interface portions and associated methods and articles</title><author>Michaluk, Christopher ; Rozak, Gary Alan ; Gaydos, Mark E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10643827B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ALLOYS</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CASTING</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</topic><topic>ELECTRICITY</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>MAKING METALLIC POWDER</topic><topic>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</topic><topic>METALLURGY</topic><topic>PERFORMING OPERATIONS</topic><topic>POWDER METALLURGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><topic>WORKING METALLIC POWDER</topic><toplevel>online_resources</toplevel><creatorcontrib>Michaluk, Christopher</creatorcontrib><creatorcontrib>Rozak, Gary Alan</creatorcontrib><creatorcontrib>Gaydos, Mark E</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Michaluk, Christopher</au><au>Rozak, Gary Alan</au><au>Gaydos, Mark E</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-block sputtering target with interface portions and associated methods and articles</title><date>2020-05-05</date><risdate>2020</risdate><abstract>A sputtering target that includes at least two consolidated blocks, each block including an alloy including a first metal (e.g., a refractory metal such as molybdenum in an amount greater than about 30 percent by weight) and at least one additional alloying ingredient; and a joint between the at least two consolidated blocks, the joint being prepared free of any microstructure derived from a diffusion bond of an added loose powder. A process for making the target includes hot isostatically pressing (e.g., below a temperature of 1080° C.), consolidated preform blocks that, prior to pressing, have interposed between the consolidated powder metal blocks at least one continuous solid interface portion. The at least one continuous solid interface portion may include a cold spray body, which may be a mass of cold spray deposited powders on a surface a block, a sintered preform, a compacted powder body (e.g., a tile), or any combination thereof.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10643827B2 |
source | esp@cenet |
subjects | ALLOYS BASIC ELECTRIC ELEMENTS CASTING CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS ELECTRICITY FERROUS OR NON-FERROUS ALLOYS INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL MAKING METALLIC POWDER MANUFACTURE OF ARTICLES FROM METALLIC POWDER METALLURGY PERFORMING OPERATIONS POWDER METALLURGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TRANSPORTING TREATMENT OF ALLOYS OR NON-FERROUS METALS WORKING METALLIC POWDER |
title | Multi-block sputtering target with interface portions and associated methods and articles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Michaluk,%20Christopher&rft.date=2020-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10643827B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |