Machine learning system flow authoring tool

Some embodiments include a workflow authoring tool that accesses a text string representation of a workflow and a text string representation of at least a data processing operator type. The workflow authoring tool enables definition of one or more data processing operator types that can be reference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mehanna, Hussein Mohamed Hassan, Paton, James Robert, Xie, Xiaowen, Bowers, Stuart Michael, Farnham, Rodrigo Bouchardet, Dunn, Jeffrey Scott, Sidorov, Aleksandr, Gusatti Azzolini, Alisson, Vagata, Pamela Shen
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mehanna, Hussein Mohamed Hassan
Paton, James Robert
Xie, Xiaowen
Bowers, Stuart Michael
Farnham, Rodrigo Bouchardet
Dunn, Jeffrey Scott
Sidorov, Aleksandr
Gusatti Azzolini, Alisson
Vagata, Pamela Shen
description Some embodiments include a workflow authoring tool that accesses a text string representation of a workflow and a text string representation of at least a data processing operator type. The workflow authoring tool enables definition of one or more data processing operator types that can be referenced in defining the machine learning workflow. When scheduling a workflow, the text string representation of the workflow can be parsed and traversed to generate an interdependency graph of one or more data processing operators. The text string representation of the data processing operator type can identify operator attributes associated with the data processing operator type.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10643144B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10643144B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10643144B23</originalsourceid><addsrcrecordid>eNrjZND2TUzOyMxLVchJTSzKy8xLVyiuLC5JzVVIy8kvV0gsLcnILwKJluTn5_AwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYEMDMxNjQxMTJyNjYtQAAH0pKcU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning system flow authoring tool</title><source>esp@cenet</source><creator>Mehanna, Hussein Mohamed Hassan ; Paton, James Robert ; Xie, Xiaowen ; Bowers, Stuart Michael ; Farnham, Rodrigo Bouchardet ; Dunn, Jeffrey Scott ; Sidorov, Aleksandr ; Gusatti Azzolini, Alisson ; Vagata, Pamela Shen</creator><creatorcontrib>Mehanna, Hussein Mohamed Hassan ; Paton, James Robert ; Xie, Xiaowen ; Bowers, Stuart Michael ; Farnham, Rodrigo Bouchardet ; Dunn, Jeffrey Scott ; Sidorov, Aleksandr ; Gusatti Azzolini, Alisson ; Vagata, Pamela Shen</creatorcontrib><description>Some embodiments include a workflow authoring tool that accesses a text string representation of a workflow and a text string representation of at least a data processing operator type. The workflow authoring tool enables definition of one or more data processing operator types that can be referenced in defining the machine learning workflow. When scheduling a workflow, the text string representation of the workflow can be parsed and traversed to generate an interdependency graph of one or more data processing operators. The text string representation of the data processing operator type can identify operator attributes associated with the data processing operator type.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200505&amp;DB=EPODOC&amp;CC=US&amp;NR=10643144B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200505&amp;DB=EPODOC&amp;CC=US&amp;NR=10643144B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mehanna, Hussein Mohamed Hassan</creatorcontrib><creatorcontrib>Paton, James Robert</creatorcontrib><creatorcontrib>Xie, Xiaowen</creatorcontrib><creatorcontrib>Bowers, Stuart Michael</creatorcontrib><creatorcontrib>Farnham, Rodrigo Bouchardet</creatorcontrib><creatorcontrib>Dunn, Jeffrey Scott</creatorcontrib><creatorcontrib>Sidorov, Aleksandr</creatorcontrib><creatorcontrib>Gusatti Azzolini, Alisson</creatorcontrib><creatorcontrib>Vagata, Pamela Shen</creatorcontrib><title>Machine learning system flow authoring tool</title><description>Some embodiments include a workflow authoring tool that accesses a text string representation of a workflow and a text string representation of at least a data processing operator type. The workflow authoring tool enables definition of one or more data processing operator types that can be referenced in defining the machine learning workflow. When scheduling a workflow, the text string representation of the workflow can be parsed and traversed to generate an interdependency graph of one or more data processing operators. The text string representation of the data processing operator type can identify operator attributes associated with the data processing operator type.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND2TUzOyMxLVchJTSzKy8xLVyiuLC5JzVVIy8kvV0gsLcnILwKJluTn5_AwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYEMDMxNjQxMTJyNjYtQAAH0pKcU</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Mehanna, Hussein Mohamed Hassan</creator><creator>Paton, James Robert</creator><creator>Xie, Xiaowen</creator><creator>Bowers, Stuart Michael</creator><creator>Farnham, Rodrigo Bouchardet</creator><creator>Dunn, Jeffrey Scott</creator><creator>Sidorov, Aleksandr</creator><creator>Gusatti Azzolini, Alisson</creator><creator>Vagata, Pamela Shen</creator><scope>EVB</scope></search><sort><creationdate>20200505</creationdate><title>Machine learning system flow authoring tool</title><author>Mehanna, Hussein Mohamed Hassan ; Paton, James Robert ; Xie, Xiaowen ; Bowers, Stuart Michael ; Farnham, Rodrigo Bouchardet ; Dunn, Jeffrey Scott ; Sidorov, Aleksandr ; Gusatti Azzolini, Alisson ; Vagata, Pamela Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10643144B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Mehanna, Hussein Mohamed Hassan</creatorcontrib><creatorcontrib>Paton, James Robert</creatorcontrib><creatorcontrib>Xie, Xiaowen</creatorcontrib><creatorcontrib>Bowers, Stuart Michael</creatorcontrib><creatorcontrib>Farnham, Rodrigo Bouchardet</creatorcontrib><creatorcontrib>Dunn, Jeffrey Scott</creatorcontrib><creatorcontrib>Sidorov, Aleksandr</creatorcontrib><creatorcontrib>Gusatti Azzolini, Alisson</creatorcontrib><creatorcontrib>Vagata, Pamela Shen</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mehanna, Hussein Mohamed Hassan</au><au>Paton, James Robert</au><au>Xie, Xiaowen</au><au>Bowers, Stuart Michael</au><au>Farnham, Rodrigo Bouchardet</au><au>Dunn, Jeffrey Scott</au><au>Sidorov, Aleksandr</au><au>Gusatti Azzolini, Alisson</au><au>Vagata, Pamela Shen</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning system flow authoring tool</title><date>2020-05-05</date><risdate>2020</risdate><abstract>Some embodiments include a workflow authoring tool that accesses a text string representation of a workflow and a text string representation of at least a data processing operator type. The workflow authoring tool enables definition of one or more data processing operator types that can be referenced in defining the machine learning workflow. When scheduling a workflow, the text string representation of the workflow can be parsed and traversed to generate an interdependency graph of one or more data processing operators. The text string representation of the data processing operator type can identify operator attributes associated with the data processing operator type.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10643144B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Machine learning system flow authoring tool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mehanna,%20Hussein%20Mohamed%20Hassan&rft.date=2020-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10643144B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true