Optimal scanning trajectories for 3D scenes
Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajecto...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Sinha, Sudipta Narayan Kapoor, Ashish Dey, Debadeepta Roberts, Mike Joshi, Neel Suresh Shah, Shital |
description | Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10602056B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10602056B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10602056B23</originalsourceid><addsrcrecordid>eNrjZND2LyjJzE3MUShOTszLy8xLVygpSsxKTS7JL8pMLVZIyy9SMHYBSqbmpRbzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oJEkKqS-NBgQwMzAyMDUzMnI2Ni1AAAUwIpQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimal scanning trajectories for 3D scenes</title><source>esp@cenet</source><creator>Sinha, Sudipta Narayan ; Kapoor, Ashish ; Dey, Debadeepta ; Roberts, Mike ; Joshi, Neel Suresh ; Shah, Shital</creator><creatorcontrib>Sinha, Sudipta Narayan ; Kapoor, Ashish ; Dey, Debadeepta ; Roberts, Mike ; Joshi, Neel Suresh ; Shah, Shital</creatorcontrib><description>Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories.</description><language>eng</language><subject>AEROPLANES ; AIRCRAFT ; AVIATION ; CALCULATING ; COMPUTING ; COSMONAUTICS ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; HELICOPTERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PERFORMING OPERATIONS ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION ; TRANSPORTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200324&DB=EPODOC&CC=US&NR=10602056B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200324&DB=EPODOC&CC=US&NR=10602056B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sinha, Sudipta Narayan</creatorcontrib><creatorcontrib>Kapoor, Ashish</creatorcontrib><creatorcontrib>Dey, Debadeepta</creatorcontrib><creatorcontrib>Roberts, Mike</creatorcontrib><creatorcontrib>Joshi, Neel Suresh</creatorcontrib><creatorcontrib>Shah, Shital</creatorcontrib><title>Optimal scanning trajectories for 3D scenes</title><description>Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories.</description><subject>AEROPLANES</subject><subject>AIRCRAFT</subject><subject>AVIATION</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COSMONAUTICS</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>HELICOPTERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND2LyjJzE3MUShOTszLy8xLVygpSsxKTS7JL8pMLVZIyy9SMHYBSqbmpRbzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oJEkKqS-NBgQwMzAyMDUzMnI2Ni1AAAUwIpQw</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Sinha, Sudipta Narayan</creator><creator>Kapoor, Ashish</creator><creator>Dey, Debadeepta</creator><creator>Roberts, Mike</creator><creator>Joshi, Neel Suresh</creator><creator>Shah, Shital</creator><scope>EVB</scope></search><sort><creationdate>20200324</creationdate><title>Optimal scanning trajectories for 3D scenes</title><author>Sinha, Sudipta Narayan ; Kapoor, Ashish ; Dey, Debadeepta ; Roberts, Mike ; Joshi, Neel Suresh ; Shah, Shital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10602056B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AEROPLANES</topic><topic>AIRCRAFT</topic><topic>AVIATION</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COSMONAUTICS</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>HELICOPTERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Sudipta Narayan</creatorcontrib><creatorcontrib>Kapoor, Ashish</creatorcontrib><creatorcontrib>Dey, Debadeepta</creatorcontrib><creatorcontrib>Roberts, Mike</creatorcontrib><creatorcontrib>Joshi, Neel Suresh</creatorcontrib><creatorcontrib>Shah, Shital</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sinha, Sudipta Narayan</au><au>Kapoor, Ashish</au><au>Dey, Debadeepta</au><au>Roberts, Mike</au><au>Joshi, Neel Suresh</au><au>Shah, Shital</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimal scanning trajectories for 3D scenes</title><date>2020-03-24</date><risdate>2020</risdate><abstract>Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10602056B2 |
source | esp@cenet |
subjects | AEROPLANES AIRCRAFT AVIATION CALCULATING COMPUTING COSMONAUTICS COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY HELICOPTERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PERFORMING OPERATIONS PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION TRANSPORTING |
title | Optimal scanning trajectories for 3D scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sinha,%20Sudipta%20Narayan&rft.date=2020-03-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10602056B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |