Optimal scanning trajectories for 3D scenes

Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajecto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sinha, Sudipta Narayan, Kapoor, Ashish, Dey, Debadeepta, Roberts, Mike, Joshi, Neel Suresh, Shah, Shital
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sinha, Sudipta Narayan
Kapoor, Ashish
Dey, Debadeepta
Roberts, Mike
Joshi, Neel Suresh
Shah, Shital
description Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10602056B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10602056B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10602056B23</originalsourceid><addsrcrecordid>eNrjZND2LyjJzE3MUShOTszLy8xLVygpSsxKTS7JL8pMLVZIyy9SMHYBSqbmpRbzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oJEkKqS-NBgQwMzAyMDUzMnI2Ni1AAAUwIpQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimal scanning trajectories for 3D scenes</title><source>esp@cenet</source><creator>Sinha, Sudipta Narayan ; Kapoor, Ashish ; Dey, Debadeepta ; Roberts, Mike ; Joshi, Neel Suresh ; Shah, Shital</creator><creatorcontrib>Sinha, Sudipta Narayan ; Kapoor, Ashish ; Dey, Debadeepta ; Roberts, Mike ; Joshi, Neel Suresh ; Shah, Shital</creatorcontrib><description>Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories.</description><language>eng</language><subject>AEROPLANES ; AIRCRAFT ; AVIATION ; CALCULATING ; COMPUTING ; COSMONAUTICS ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; HELICOPTERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PERFORMING OPERATIONS ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION ; TRANSPORTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200324&amp;DB=EPODOC&amp;CC=US&amp;NR=10602056B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200324&amp;DB=EPODOC&amp;CC=US&amp;NR=10602056B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sinha, Sudipta Narayan</creatorcontrib><creatorcontrib>Kapoor, Ashish</creatorcontrib><creatorcontrib>Dey, Debadeepta</creatorcontrib><creatorcontrib>Roberts, Mike</creatorcontrib><creatorcontrib>Joshi, Neel Suresh</creatorcontrib><creatorcontrib>Shah, Shital</creatorcontrib><title>Optimal scanning trajectories for 3D scenes</title><description>Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories.</description><subject>AEROPLANES</subject><subject>AIRCRAFT</subject><subject>AVIATION</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COSMONAUTICS</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>HELICOPTERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND2LyjJzE3MUShOTszLy8xLVygpSsxKTS7JL8pMLVZIyy9SMHYBSqbmpRbzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oJEkKqS-NBgQwMzAyMDUzMnI2Ni1AAAUwIpQw</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Sinha, Sudipta Narayan</creator><creator>Kapoor, Ashish</creator><creator>Dey, Debadeepta</creator><creator>Roberts, Mike</creator><creator>Joshi, Neel Suresh</creator><creator>Shah, Shital</creator><scope>EVB</scope></search><sort><creationdate>20200324</creationdate><title>Optimal scanning trajectories for 3D scenes</title><author>Sinha, Sudipta Narayan ; Kapoor, Ashish ; Dey, Debadeepta ; Roberts, Mike ; Joshi, Neel Suresh ; Shah, Shital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10602056B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AEROPLANES</topic><topic>AIRCRAFT</topic><topic>AVIATION</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COSMONAUTICS</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>HELICOPTERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Sudipta Narayan</creatorcontrib><creatorcontrib>Kapoor, Ashish</creatorcontrib><creatorcontrib>Dey, Debadeepta</creatorcontrib><creatorcontrib>Roberts, Mike</creatorcontrib><creatorcontrib>Joshi, Neel Suresh</creatorcontrib><creatorcontrib>Shah, Shital</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sinha, Sudipta Narayan</au><au>Kapoor, Ashish</au><au>Dey, Debadeepta</au><au>Roberts, Mike</au><au>Joshi, Neel Suresh</au><au>Shah, Shital</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimal scanning trajectories for 3D scenes</title><date>2020-03-24</date><risdate>2020</risdate><abstract>Examples of the present disclosure relate to generating optimal scanning trajectories for 3D scenes. In an example, a moveable camera may gather information about a scene. During an initial pass, an initial trajectory may be used to gather an initial dataset. In order to generate an optimal trajectory, a reconstruction of the scene may be generated based on the initial data set. Surface points and a camera position graph may be generated based on the reconstruction. A subgradient may be determined, wherein the subgradient provides an additive approximation for the marginal reward associated with each camera position node in the camera position graph. The subgradient may be used to generate an optimal trajectory based on the marginal reward of each camera position node. The optimal trajectory may then be used by to gather additional data, which may be iteratively analyzed and used to further refine and optimize subsequent trajectories.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10602056B2
source esp@cenet
subjects AEROPLANES
AIRCRAFT
AVIATION
CALCULATING
COMPUTING
COSMONAUTICS
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
HELICOPTERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PERFORMING OPERATIONS
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
TRANSPORTING
title Optimal scanning trajectories for 3D scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sinha,%20Sudipta%20Narayan&rft.date=2020-03-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10602056B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true