System for automatic, simultaneous feature selection and hyperparameter tuning for a machine learning model

A computing device selects a feature set and hyperparameters for a machine learning model to predict a value for a characteristic in a scoring dataset. A number of training model iterations is determined. A unique evaluation pair is selected for each iteration that indicates a feature set selected f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sglavo, Udo, Czika, Wendy Ann, Gunes, Funda, Haller, Susan Edwards
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sglavo, Udo
Czika, Wendy Ann
Gunes, Funda
Haller, Susan Edwards
description A computing device selects a feature set and hyperparameters for a machine learning model to predict a value for a characteristic in a scoring dataset. A number of training model iterations is determined. A unique evaluation pair is selected for each iteration that indicates a feature set selected from feature sets and a hyperparameter configuration selected from hyperparameter configurations. A machine learning model is trained using each unique evaluation pair. Each trained machine learning model is validated to compute a performance measure value. An estimation model is trained with the feature set, the hyperparameter configuration, and the performance measure value computed for unique evaluation pair. The trained estimation model is executed to compute the performance measure value for each unique evaluation pair. A final feature set and a final hyperparameter configuration are selected based on the computed performance measure value.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10600005B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10600005B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10600005B23</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxr1CVfQAiuK-ui5D-muDySQkk0Vvr6gH8G8ePB5_Wj2bMSs89SERFw2e1ZoVZeuLUxaEkqkHa0mgDAejNgixdDSMESlyYg9FIi1i5fH9Ic9msAJy4PTRPnRw82rSs8tY_Dirlpfz7XRdI4YWObKBQNt7s6kP9Xv743b3T_MCTadCJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System for automatic, simultaneous feature selection and hyperparameter tuning for a machine learning model</title><source>esp@cenet</source><creator>Sglavo, Udo ; Czika, Wendy Ann ; Gunes, Funda ; Haller, Susan Edwards</creator><creatorcontrib>Sglavo, Udo ; Czika, Wendy Ann ; Gunes, Funda ; Haller, Susan Edwards</creatorcontrib><description>A computing device selects a feature set and hyperparameters for a machine learning model to predict a value for a characteristic in a scoring dataset. A number of training model iterations is determined. A unique evaluation pair is selected for each iteration that indicates a feature set selected from feature sets and a hyperparameter configuration selected from hyperparameter configurations. A machine learning model is trained using each unique evaluation pair. Each trained machine learning model is validated to compute a performance measure value. An estimation model is trained with the feature set, the hyperparameter configuration, and the performance measure value computed for unique evaluation pair. The trained estimation model is executed to compute the performance measure value for each unique evaluation pair. A final feature set and a final hyperparameter configuration are selected based on the computed performance measure value.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200324&amp;DB=EPODOC&amp;CC=US&amp;NR=10600005B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200324&amp;DB=EPODOC&amp;CC=US&amp;NR=10600005B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sglavo, Udo</creatorcontrib><creatorcontrib>Czika, Wendy Ann</creatorcontrib><creatorcontrib>Gunes, Funda</creatorcontrib><creatorcontrib>Haller, Susan Edwards</creatorcontrib><title>System for automatic, simultaneous feature selection and hyperparameter tuning for a machine learning model</title><description>A computing device selects a feature set and hyperparameters for a machine learning model to predict a value for a characteristic in a scoring dataset. A number of training model iterations is determined. A unique evaluation pair is selected for each iteration that indicates a feature set selected from feature sets and a hyperparameter configuration selected from hyperparameter configurations. A machine learning model is trained using each unique evaluation pair. Each trained machine learning model is validated to compute a performance measure value. An estimation model is trained with the feature set, the hyperparameter configuration, and the performance measure value computed for unique evaluation pair. The trained estimation model is executed to compute the performance measure value for each unique evaluation pair. A final feature set and a final hyperparameter configuration are selected based on the computed performance measure value.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxr1CVfQAiuK-ui5D-muDySQkk0Vvr6gH8G8ePB5_Wj2bMSs89SERFw2e1ZoVZeuLUxaEkqkHa0mgDAejNgixdDSMESlyYg9FIi1i5fH9Ic9msAJy4PTRPnRw82rSs8tY_Dirlpfz7XRdI4YWObKBQNt7s6kP9Xv743b3T_MCTadCJw</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Sglavo, Udo</creator><creator>Czika, Wendy Ann</creator><creator>Gunes, Funda</creator><creator>Haller, Susan Edwards</creator><scope>EVB</scope></search><sort><creationdate>20200324</creationdate><title>System for automatic, simultaneous feature selection and hyperparameter tuning for a machine learning model</title><author>Sglavo, Udo ; Czika, Wendy Ann ; Gunes, Funda ; Haller, Susan Edwards</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10600005B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sglavo, Udo</creatorcontrib><creatorcontrib>Czika, Wendy Ann</creatorcontrib><creatorcontrib>Gunes, Funda</creatorcontrib><creatorcontrib>Haller, Susan Edwards</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sglavo, Udo</au><au>Czika, Wendy Ann</au><au>Gunes, Funda</au><au>Haller, Susan Edwards</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System for automatic, simultaneous feature selection and hyperparameter tuning for a machine learning model</title><date>2020-03-24</date><risdate>2020</risdate><abstract>A computing device selects a feature set and hyperparameters for a machine learning model to predict a value for a characteristic in a scoring dataset. A number of training model iterations is determined. A unique evaluation pair is selected for each iteration that indicates a feature set selected from feature sets and a hyperparameter configuration selected from hyperparameter configurations. A machine learning model is trained using each unique evaluation pair. Each trained machine learning model is validated to compute a performance measure value. An estimation model is trained with the feature set, the hyperparameter configuration, and the performance measure value computed for unique evaluation pair. The trained estimation model is executed to compute the performance measure value for each unique evaluation pair. A final feature set and a final hyperparameter configuration are selected based on the computed performance measure value.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10600005B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title System for automatic, simultaneous feature selection and hyperparameter tuning for a machine learning model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sglavo,%20Udo&rft.date=2020-03-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10600005B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true