Training multiple neural networks with different accuracy

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gruenstein, Alexander H
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gruenstein, Alexander H
description Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10546236B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10546236B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10546236B23</originalsourceid><addsrcrecordid>eNrjZLAMKUrMzMvMS1fILc0pySzISVXISy0tSswBUiXl-UXZxQrlmSUZCimZaWmpRal5JQqJyclA-eRKHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJwKNCI-NNjQwNTEzMjYzMnImBg1AI-6L3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training multiple neural networks with different accuracy</title><source>esp@cenet</source><creator>Gruenstein, Alexander H</creator><creatorcontrib>Gruenstein, Alexander H</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200128&amp;DB=EPODOC&amp;CC=US&amp;NR=10546236B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200128&amp;DB=EPODOC&amp;CC=US&amp;NR=10546236B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gruenstein, Alexander H</creatorcontrib><title>Training multiple neural networks with different accuracy</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMKUrMzMvMS1fILc0pySzISVXISy0tSswBUiXl-UXZxQrlmSUZCimZaWmpRal5JQqJyclA-eRKHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJwKNCI-NNjQwNTEzMjYzMnImBg1AI-6L3Q</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Gruenstein, Alexander H</creator><scope>EVB</scope></search><sort><creationdate>20200128</creationdate><title>Training multiple neural networks with different accuracy</title><author>Gruenstein, Alexander H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10546236B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Gruenstein, Alexander H</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gruenstein, Alexander H</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training multiple neural networks with different accuracy</title><date>2020-01-28</date><risdate>2020</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10546236B2
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Training multiple neural networks with different accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gruenstein,%20Alexander%20H&rft.date=2020-01-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10546236B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true