Content relevance in a social networking system using population-representative human rater pool

A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Scissors, Lauren Elizabeth, Backstrom, Lars Seren, Eulenstein, Max Christian, Wang, Lu, Peysakhovich, Alexander
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Scissors, Lauren Elizabeth
Backstrom, Lars Seren
Eulenstein, Max Christian
Wang, Lu
Peysakhovich, Alexander
description A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10540627B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10540627B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10540627B23</originalsourceid><addsrcrecordid>eNqNjcsKwjAQRbtxIeo_jB9QqPW1tyju1XUdylWD6SRkkop_bwQ_wNXlwOHccXFtnERIpACLgaUDGSEmdZ1hS4L4cuFp5E761oiekn7BO58sR-OkDPABmhMZB9Aj9SwUOCJky9lpMbqxVcx-Oynmh_25OZbwroV67pBP2stpUa1X1abe7urlP84HR5o-fQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Content relevance in a social networking system using population-representative human rater pool</title><source>esp@cenet</source><creator>Scissors, Lauren Elizabeth ; Backstrom, Lars Seren ; Eulenstein, Max Christian ; Wang, Lu ; Peysakhovich, Alexander</creator><creatorcontrib>Scissors, Lauren Elizabeth ; Backstrom, Lars Seren ; Eulenstein, Max Christian ; Wang, Lu ; Peysakhovich, Alexander</creatorcontrib><description>A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200121&amp;DB=EPODOC&amp;CC=US&amp;NR=10540627B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200121&amp;DB=EPODOC&amp;CC=US&amp;NR=10540627B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Scissors, Lauren Elizabeth</creatorcontrib><creatorcontrib>Backstrom, Lars Seren</creatorcontrib><creatorcontrib>Eulenstein, Max Christian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Peysakhovich, Alexander</creatorcontrib><title>Content relevance in a social networking system using population-representative human rater pool</title><description>A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjcsKwjAQRbtxIeo_jB9QqPW1tyju1XUdylWD6SRkkop_bwQ_wNXlwOHccXFtnERIpACLgaUDGSEmdZ1hS4L4cuFp5E761oiekn7BO58sR-OkDPABmhMZB9Aj9SwUOCJky9lpMbqxVcx-Oynmh_25OZbwroV67pBP2stpUa1X1abe7urlP84HR5o-fQ</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Scissors, Lauren Elizabeth</creator><creator>Backstrom, Lars Seren</creator><creator>Eulenstein, Max Christian</creator><creator>Wang, Lu</creator><creator>Peysakhovich, Alexander</creator><scope>EVB</scope></search><sort><creationdate>20200121</creationdate><title>Content relevance in a social networking system using population-representative human rater pool</title><author>Scissors, Lauren Elizabeth ; Backstrom, Lars Seren ; Eulenstein, Max Christian ; Wang, Lu ; Peysakhovich, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10540627B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Scissors, Lauren Elizabeth</creatorcontrib><creatorcontrib>Backstrom, Lars Seren</creatorcontrib><creatorcontrib>Eulenstein, Max Christian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Peysakhovich, Alexander</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scissors, Lauren Elizabeth</au><au>Backstrom, Lars Seren</au><au>Eulenstein, Max Christian</au><au>Wang, Lu</au><au>Peysakhovich, Alexander</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Content relevance in a social networking system using population-representative human rater pool</title><date>2020-01-21</date><risdate>2020</risdate><abstract>A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10540627B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Content relevance in a social networking system using population-representative human rater pool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Scissors,%20Lauren%20Elizabeth&rft.date=2020-01-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10540627B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true