Content relevance in a social networking system using population-representative human rater pool
A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for pr...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Scissors, Lauren Elizabeth Backstrom, Lars Seren Eulenstein, Max Christian Wang, Lu Peysakhovich, Alexander |
description | A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10540627B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10540627B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10540627B23</originalsourceid><addsrcrecordid>eNqNjcsKwjAQRbtxIeo_jB9QqPW1tyju1XUdylWD6SRkkop_bwQ_wNXlwOHccXFtnERIpACLgaUDGSEmdZ1hS4L4cuFp5E761oiekn7BO58sR-OkDPABmhMZB9Aj9SwUOCJky9lpMbqxVcx-Oynmh_25OZbwroV67pBP2stpUa1X1abe7urlP84HR5o-fQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Content relevance in a social networking system using population-representative human rater pool</title><source>esp@cenet</source><creator>Scissors, Lauren Elizabeth ; Backstrom, Lars Seren ; Eulenstein, Max Christian ; Wang, Lu ; Peysakhovich, Alexander</creator><creatorcontrib>Scissors, Lauren Elizabeth ; Backstrom, Lars Seren ; Eulenstein, Max Christian ; Wang, Lu ; Peysakhovich, Alexander</creatorcontrib><description>A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200121&DB=EPODOC&CC=US&NR=10540627B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200121&DB=EPODOC&CC=US&NR=10540627B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Scissors, Lauren Elizabeth</creatorcontrib><creatorcontrib>Backstrom, Lars Seren</creatorcontrib><creatorcontrib>Eulenstein, Max Christian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Peysakhovich, Alexander</creatorcontrib><title>Content relevance in a social networking system using population-representative human rater pool</title><description>A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjcsKwjAQRbtxIeo_jB9QqPW1tyju1XUdylWD6SRkkop_bwQ_wNXlwOHccXFtnERIpACLgaUDGSEmdZ1hS4L4cuFp5E761oiekn7BO58sR-OkDPABmhMZB9Aj9SwUOCJky9lpMbqxVcx-Oynmh_25OZbwroV67pBP2stpUa1X1abe7urlP84HR5o-fQ</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Scissors, Lauren Elizabeth</creator><creator>Backstrom, Lars Seren</creator><creator>Eulenstein, Max Christian</creator><creator>Wang, Lu</creator><creator>Peysakhovich, Alexander</creator><scope>EVB</scope></search><sort><creationdate>20200121</creationdate><title>Content relevance in a social networking system using population-representative human rater pool</title><author>Scissors, Lauren Elizabeth ; Backstrom, Lars Seren ; Eulenstein, Max Christian ; Wang, Lu ; Peysakhovich, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10540627B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Scissors, Lauren Elizabeth</creatorcontrib><creatorcontrib>Backstrom, Lars Seren</creatorcontrib><creatorcontrib>Eulenstein, Max Christian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Peysakhovich, Alexander</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scissors, Lauren Elizabeth</au><au>Backstrom, Lars Seren</au><au>Eulenstein, Max Christian</au><au>Wang, Lu</au><au>Peysakhovich, Alexander</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Content relevance in a social networking system using population-representative human rater pool</title><date>2020-01-21</date><risdate>2020</risdate><abstract>A social networking system builds a quality controlled and desired population-representative pool of human raters to provide ratings on content items to improve a feed ranking model used for providing its users with more relevant content. The system identifies a pool of candidate human raters for providing ratings on a feed of content items. For each candidate human rater of the pool of candidate human raters, the system presents a feed of content items based on a feed ranking model, obtains ratings on the feed of content items, and determines a score representing the consistency of the obtained ratings, the representativeness of the pool of human raters, or the relevance of the content provided by the ranking model. The system uses the computed scores to modify the ranking model used to present content to its users for improving the relevance of the presented content.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10540627B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Content relevance in a social networking system using population-representative human rater pool |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Scissors,%20Lauren%20Elizabeth&rft.date=2020-01-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10540627B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |