Block floating point for neural network implementations
Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. I...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Forin, Alessandro Bittner, Ray |
description | Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10528321B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10528321B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10528321B23</originalsourceid><addsrcrecordid>eNrjZDB3yslPzlZIy8lPLMnMS1coyM_MK1FIyy9SyEstLUrMAVIl5flF2QqZuQU5qbmpeSVAdfl5xTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagzPjTY0MDUyMLYyNDJyJgYNQAJ_S6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Block floating point for neural network implementations</title><source>esp@cenet</source><creator>Forin, Alessandro ; Bittner, Ray</creator><creatorcontrib>Forin, Alessandro ; Bittner, Ray</creatorcontrib><description>Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200107&DB=EPODOC&CC=US&NR=10528321B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200107&DB=EPODOC&CC=US&NR=10528321B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Forin, Alessandro</creatorcontrib><creatorcontrib>Bittner, Ray</creatorcontrib><title>Block floating point for neural network implementations</title><description>Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB3yslPzlZIy8lPLMnMS1coyM_MK1FIyy9SyEstLUrMAVIl5flF2QqZuQU5qbmpeSVAdfl5xTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagzPjTY0MDUyMLYyNDJyJgYNQAJ_S6Y</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Forin, Alessandro</creator><creator>Bittner, Ray</creator><scope>EVB</scope></search><sort><creationdate>20200107</creationdate><title>Block floating point for neural network implementations</title><author>Forin, Alessandro ; Bittner, Ray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10528321B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Forin, Alessandro</creatorcontrib><creatorcontrib>Bittner, Ray</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forin, Alessandro</au><au>Bittner, Ray</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Block floating point for neural network implementations</title><date>2020-01-07</date><risdate>2020</risdate><abstract>Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10528321B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Block floating point for neural network implementations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Forin,%20Alessandro&rft.date=2020-01-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10528321B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |