Block floating point for neural network implementations

Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Forin, Alessandro, Bittner, Ray
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Forin, Alessandro
Bittner, Ray
description Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10528321B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10528321B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10528321B23</originalsourceid><addsrcrecordid>eNrjZDB3yslPzlZIy8lPLMnMS1coyM_MK1FIyy9SyEstLUrMAVIl5flF2QqZuQU5qbmpeSVAdfl5xTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagzPjTY0MDUyMLYyNDJyJgYNQAJ_S6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Block floating point for neural network implementations</title><source>esp@cenet</source><creator>Forin, Alessandro ; Bittner, Ray</creator><creatorcontrib>Forin, Alessandro ; Bittner, Ray</creatorcontrib><description>Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200107&amp;DB=EPODOC&amp;CC=US&amp;NR=10528321B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200107&amp;DB=EPODOC&amp;CC=US&amp;NR=10528321B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Forin, Alessandro</creatorcontrib><creatorcontrib>Bittner, Ray</creatorcontrib><title>Block floating point for neural network implementations</title><description>Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB3yslPzlZIy8lPLMnMS1coyM_MK1FIyy9SyEstLUrMAVIl5flF2QqZuQU5qbmpeSVAdfl5xTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagzPjTY0MDUyMLYyNDJyJgYNQAJ_S6Y</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Forin, Alessandro</creator><creator>Bittner, Ray</creator><scope>EVB</scope></search><sort><creationdate>20200107</creationdate><title>Block floating point for neural network implementations</title><author>Forin, Alessandro ; Bittner, Ray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10528321B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Forin, Alessandro</creatorcontrib><creatorcontrib>Bittner, Ray</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forin, Alessandro</au><au>Bittner, Ray</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Block floating point for neural network implementations</title><date>2020-01-07</date><risdate>2020</risdate><abstract>Apparatus and methods are disclosed for performing block floating-point (BFP) operations, including in implementations of neural networks. All or a portion of one or more matrices or vectors can share one or more common exponents. Techniques are disclosed for selecting the shared common exponents. In some examples of the disclosed technology, a method includes producing BFP representations of matrices or vectors, at least two elements of the respective matrices or vectors sharing a common exponent, performing a mathematical operation on two or more of the plurality of matrices or vectors, and producing an output matrix or vector. Based on the output matrix or vector, one or more updated common exponents are selected, and an updated matrix or vector is produced having some elements that share the updated common exponents.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10528321B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Block floating point for neural network implementations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Forin,%20Alessandro&rft.date=2020-01-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10528321B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true