Predictive model evaluation and training based on utility

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a plurality of different types of predictive models using training data, wherein each of the predictive models implements a different machine learning technique. One or more weights are ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Wei-Hao, Green, Travis H. K, Haertel, Robbie A, Fu, Gang, Kaplow, Robert, Mann, Gideon S
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lin, Wei-Hao
Green, Travis H. K
Haertel, Robbie A
Fu, Gang
Kaplow, Robert
Mann, Gideon S
description Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a plurality of different types of predictive models using training data, wherein each of the predictive models implements a different machine learning technique. One or more weights are obtained wherein each weight is associated with an answer category in the plurality of examples. A weighted accuracy is calculated for each of the predictive models using the one or more weights.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10515313B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10515313B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10515313B23</originalsourceid><addsrcrecordid>eNrjZLAMKEpNyUwuySxLVcjNT0nNUUgtS8wpTSzJzM9TSMxLUSgpSszMy8xLV0hKLE5NUQCKlpZk5mSWVPIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYEMDU0NTY0NjJyNjYtQAAFqKLvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Predictive model evaluation and training based on utility</title><source>esp@cenet</source><creator>Lin, Wei-Hao ; Green, Travis H. K ; Haertel, Robbie A ; Fu, Gang ; Kaplow, Robert ; Mann, Gideon S</creator><creatorcontrib>Lin, Wei-Hao ; Green, Travis H. K ; Haertel, Robbie A ; Fu, Gang ; Kaplow, Robert ; Mann, Gideon S</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a plurality of different types of predictive models using training data, wherein each of the predictive models implements a different machine learning technique. One or more weights are obtained wherein each weight is associated with an answer category in the plurality of examples. A weighted accuracy is calculated for each of the predictive models using the one or more weights.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191224&amp;DB=EPODOC&amp;CC=US&amp;NR=10515313B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191224&amp;DB=EPODOC&amp;CC=US&amp;NR=10515313B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lin, Wei-Hao</creatorcontrib><creatorcontrib>Green, Travis H. K</creatorcontrib><creatorcontrib>Haertel, Robbie A</creatorcontrib><creatorcontrib>Fu, Gang</creatorcontrib><creatorcontrib>Kaplow, Robert</creatorcontrib><creatorcontrib>Mann, Gideon S</creatorcontrib><title>Predictive model evaluation and training based on utility</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a plurality of different types of predictive models using training data, wherein each of the predictive models implements a different machine learning technique. One or more weights are obtained wherein each weight is associated with an answer category in the plurality of examples. A weighted accuracy is calculated for each of the predictive models using the one or more weights.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMKEpNyUwuySxLVcjNT0nNUUgtS8wpTSzJzM9TSMxLUSgpSszMy8xLV0hKLE5NUQCKlpZk5mSWVPIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYEMDU0NTY0NjJyNjYtQAAFqKLvE</recordid><startdate>20191224</startdate><enddate>20191224</enddate><creator>Lin, Wei-Hao</creator><creator>Green, Travis H. K</creator><creator>Haertel, Robbie A</creator><creator>Fu, Gang</creator><creator>Kaplow, Robert</creator><creator>Mann, Gideon S</creator><scope>EVB</scope></search><sort><creationdate>20191224</creationdate><title>Predictive model evaluation and training based on utility</title><author>Lin, Wei-Hao ; Green, Travis H. K ; Haertel, Robbie A ; Fu, Gang ; Kaplow, Robert ; Mann, Gideon S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10515313B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wei-Hao</creatorcontrib><creatorcontrib>Green, Travis H. K</creatorcontrib><creatorcontrib>Haertel, Robbie A</creatorcontrib><creatorcontrib>Fu, Gang</creatorcontrib><creatorcontrib>Kaplow, Robert</creatorcontrib><creatorcontrib>Mann, Gideon S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Wei-Hao</au><au>Green, Travis H. K</au><au>Haertel, Robbie A</au><au>Fu, Gang</au><au>Kaplow, Robert</au><au>Mann, Gideon S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Predictive model evaluation and training based on utility</title><date>2019-12-24</date><risdate>2019</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a plurality of different types of predictive models using training data, wherein each of the predictive models implements a different machine learning technique. One or more weights are obtained wherein each weight is associated with an answer category in the plurality of examples. A weighted accuracy is calculated for each of the predictive models using the one or more weights.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10515313B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Predictive model evaluation and training based on utility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lin,%20Wei-Hao&rft.date=2019-12-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10515313B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true