Determination of population density using convoluted neural networks
In one embodiment, a method includes receiving an image on a computing device. The computing device may further execute a weakly-supervised classification algorithm to determine whether a target feature is present in the received image. As an example, the weakly-supervised classification algorithm m...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Liu, Xianming Tiecke, Tobias Gerard Zhang, Amy Gros, Andreas |
description | In one embodiment, a method includes receiving an image on a computing device. The computing device may further execute a weakly-supervised classification algorithm to determine whether a target feature is present in the received image. As an example, the weakly-supervised classification algorithm may determine whether a building is depicted in the received image. In response to determining that a target feature is present, the method further includes using a weakly-supervised segmentation algorithm of the convoluted neural network to segment the received image for the target feature. Based on a determined footprint size of the target feature, a distribution of statistical information over the target feature in the image can be calculated. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10504007B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10504007B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10504007B23</originalsourceid><addsrcrecordid>eNrjZHBxSS1JLcrNzEssyczPU8hPUyjILyjNgfBSUvOKM0sqFUqLM_PSFZLz88ryc0pLUlMU8lJLixJzgFRJeX5RdjEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMTgUqjQ8NNjQwNTAxMDB3MjImRg0APak0AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Determination of population density using convoluted neural networks</title><source>esp@cenet</source><creator>Liu, Xianming ; Tiecke, Tobias Gerard ; Zhang, Amy ; Gros, Andreas</creator><creatorcontrib>Liu, Xianming ; Tiecke, Tobias Gerard ; Zhang, Amy ; Gros, Andreas</creatorcontrib><description>In one embodiment, a method includes receiving an image on a computing device. The computing device may further execute a weakly-supervised classification algorithm to determine whether a target feature is present in the received image. As an example, the weakly-supervised classification algorithm may determine whether a building is depicted in the received image. In response to determining that a target feature is present, the method further includes using a weakly-supervised segmentation algorithm of the convoluted neural network to segment the received image for the target feature. Based on a determined footprint size of the target feature, a distribution of statistical information over the target feature in the image can be calculated.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191210&DB=EPODOC&CC=US&NR=10504007B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191210&DB=EPODOC&CC=US&NR=10504007B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liu, Xianming</creatorcontrib><creatorcontrib>Tiecke, Tobias Gerard</creatorcontrib><creatorcontrib>Zhang, Amy</creatorcontrib><creatorcontrib>Gros, Andreas</creatorcontrib><title>Determination of population density using convoluted neural networks</title><description>In one embodiment, a method includes receiving an image on a computing device. The computing device may further execute a weakly-supervised classification algorithm to determine whether a target feature is present in the received image. As an example, the weakly-supervised classification algorithm may determine whether a building is depicted in the received image. In response to determining that a target feature is present, the method further includes using a weakly-supervised segmentation algorithm of the convoluted neural network to segment the received image for the target feature. Based on a determined footprint size of the target feature, a distribution of statistical information over the target feature in the image can be calculated.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBxSS1JLcrNzEssyczPU8hPUyjILyjNgfBSUvOKM0sqFUqLM_PSFZLz88ryc0pLUlMU8lJLixJzgFRJeX5RdjEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMTgUqjQ8NNjQwNTAxMDB3MjImRg0APak0AQ</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Liu, Xianming</creator><creator>Tiecke, Tobias Gerard</creator><creator>Zhang, Amy</creator><creator>Gros, Andreas</creator><scope>EVB</scope></search><sort><creationdate>20191210</creationdate><title>Determination of population density using convoluted neural networks</title><author>Liu, Xianming ; Tiecke, Tobias Gerard ; Zhang, Amy ; Gros, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10504007B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xianming</creatorcontrib><creatorcontrib>Tiecke, Tobias Gerard</creatorcontrib><creatorcontrib>Zhang, Amy</creatorcontrib><creatorcontrib>Gros, Andreas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xianming</au><au>Tiecke, Tobias Gerard</au><au>Zhang, Amy</au><au>Gros, Andreas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Determination of population density using convoluted neural networks</title><date>2019-12-10</date><risdate>2019</risdate><abstract>In one embodiment, a method includes receiving an image on a computing device. The computing device may further execute a weakly-supervised classification algorithm to determine whether a target feature is present in the received image. As an example, the weakly-supervised classification algorithm may determine whether a building is depicted in the received image. In response to determining that a target feature is present, the method further includes using a weakly-supervised segmentation algorithm of the convoluted neural network to segment the received image for the target feature. Based on a determined footprint size of the target feature, a distribution of statistical information over the target feature in the image can be calculated.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10504007B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Determination of population density using convoluted neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liu,%20Xianming&rft.date=2019-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10504007B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |