Constant depth, near constant depth, and subcubic size threshold circuits for linear algebraic calculations

A method of increasing an efficiency at which a plurality of threshold gates arranged as neuromorphic hardware is able to perform a linear algebraic calculation having a dominant size of N. The computer-implemented method includes using the plurality of threshold gates to perform the linear algebrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aimone, James Bradley, Parekh, Ojas D, Phillips, Cynthia A
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method of increasing an efficiency at which a plurality of threshold gates arranged as neuromorphic hardware is able to perform a linear algebraic calculation having a dominant size of N. The computer-implemented method includes using the plurality of threshold gates to perform the linear algebraic calculation in a manner that is simultaneously efficient and at a near constant depth. "Efficient" is defined as a calculation algorithm that uses fewer of the plurality of threshold gates than a naïve algorithm. The naïve algorithm is a straightforward algorithm for solving the linear algebraic calculation. "Constant depth" is defined as an algorithm that has an execution time that is independent of a size of an input to the linear algebraic calculation. The near constant depth comprises a computing depth equal to or between O(log(log(N)) and the constant depth.