Systems and methods for data estimation and forecasting
A system for estimating data in large datasets for an equipment system is provided. The system includes a data estimation and forecasting (DEF) computing device. The DEF computing device arranges a dataset in a primary matrix and parses rows of the primary matrix and generates a sample matrix by sel...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Nonato de Paula, Fabio Viana, Felipe Antonio Chegury Chennimalai Kumar, Natarajan Subramaniyan, Arun Karthi |
description | A system for estimating data in large datasets for an equipment system is provided. The system includes a data estimation and forecasting (DEF) computing device. The DEF computing device arranges a dataset in a primary matrix and parses rows of the primary matrix and generates a sample matrix by selecting primary matrix rows having non-null values for each variable. The DEF computing device adds to the sample matrix rows that include non-null values for each variable except one. The DEF computing device generates normalized values for this augmented matrix, applies several techniques including probabilistic principal component analysis (PPCA) and Markov processes, and scales the augmented matrix to normalized values. The DEF computing device generates non-null values for the variable, scales the augmented matrix back to the sample matrix, and generates a forecast for the equipment system, directing a user to update logistics processes for the equipment system. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10438126B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10438126B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10438126B23</originalsourceid><addsrcrecordid>eNrjZDAPriwuSc0tVkjMS1HITS3JyE8pVkjLL1JISSxJVEgtLsnMTSzJzM8DywPFU5MTgWJ56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDAxNjC0MjMyciYGDUA3_AuKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for data estimation and forecasting</title><source>esp@cenet</source><creator>Nonato de Paula, Fabio ; Viana, Felipe Antonio Chegury ; Chennimalai Kumar, Natarajan ; Subramaniyan, Arun Karthi</creator><creatorcontrib>Nonato de Paula, Fabio ; Viana, Felipe Antonio Chegury ; Chennimalai Kumar, Natarajan ; Subramaniyan, Arun Karthi</creatorcontrib><description>A system for estimating data in large datasets for an equipment system is provided. The system includes a data estimation and forecasting (DEF) computing device. The DEF computing device arranges a dataset in a primary matrix and parses rows of the primary matrix and generates a sample matrix by selecting primary matrix rows having non-null values for each variable. The DEF computing device adds to the sample matrix rows that include non-null values for each variable except one. The DEF computing device generates normalized values for this augmented matrix, applies several techniques including probabilistic principal component analysis (PPCA) and Markov processes, and scales the augmented matrix to normalized values. The DEF computing device generates non-null values for the variable, scales the augmented matrix back to the sample matrix, and generates a forecast for the equipment system, directing a user to update logistics processes for the equipment system.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191008&DB=EPODOC&CC=US&NR=10438126B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191008&DB=EPODOC&CC=US&NR=10438126B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nonato de Paula, Fabio</creatorcontrib><creatorcontrib>Viana, Felipe Antonio Chegury</creatorcontrib><creatorcontrib>Chennimalai Kumar, Natarajan</creatorcontrib><creatorcontrib>Subramaniyan, Arun Karthi</creatorcontrib><title>Systems and methods for data estimation and forecasting</title><description>A system for estimating data in large datasets for an equipment system is provided. The system includes a data estimation and forecasting (DEF) computing device. The DEF computing device arranges a dataset in a primary matrix and parses rows of the primary matrix and generates a sample matrix by selecting primary matrix rows having non-null values for each variable. The DEF computing device adds to the sample matrix rows that include non-null values for each variable except one. The DEF computing device generates normalized values for this augmented matrix, applies several techniques including probabilistic principal component analysis (PPCA) and Markov processes, and scales the augmented matrix to normalized values. The DEF computing device generates non-null values for the variable, scales the augmented matrix back to the sample matrix, and generates a forecast for the equipment system, directing a user to update logistics processes for the equipment system.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPriwuSc0tVkjMS1HITS3JyE8pVkjLL1JISSxJVEgtLsnMTSzJzM8DywPFU5MTgWJ56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDAxNjC0MjMyciYGDUA3_AuKQ</recordid><startdate>20191008</startdate><enddate>20191008</enddate><creator>Nonato de Paula, Fabio</creator><creator>Viana, Felipe Antonio Chegury</creator><creator>Chennimalai Kumar, Natarajan</creator><creator>Subramaniyan, Arun Karthi</creator><scope>EVB</scope></search><sort><creationdate>20191008</creationdate><title>Systems and methods for data estimation and forecasting</title><author>Nonato de Paula, Fabio ; Viana, Felipe Antonio Chegury ; Chennimalai Kumar, Natarajan ; Subramaniyan, Arun Karthi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10438126B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Nonato de Paula, Fabio</creatorcontrib><creatorcontrib>Viana, Felipe Antonio Chegury</creatorcontrib><creatorcontrib>Chennimalai Kumar, Natarajan</creatorcontrib><creatorcontrib>Subramaniyan, Arun Karthi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nonato de Paula, Fabio</au><au>Viana, Felipe Antonio Chegury</au><au>Chennimalai Kumar, Natarajan</au><au>Subramaniyan, Arun Karthi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for data estimation and forecasting</title><date>2019-10-08</date><risdate>2019</risdate><abstract>A system for estimating data in large datasets for an equipment system is provided. The system includes a data estimation and forecasting (DEF) computing device. The DEF computing device arranges a dataset in a primary matrix and parses rows of the primary matrix and generates a sample matrix by selecting primary matrix rows having non-null values for each variable. The DEF computing device adds to the sample matrix rows that include non-null values for each variable except one. The DEF computing device generates normalized values for this augmented matrix, applies several techniques including probabilistic principal component analysis (PPCA) and Markov processes, and scales the augmented matrix to normalized values. The DEF computing device generates non-null values for the variable, scales the augmented matrix back to the sample matrix, and generates a forecast for the equipment system, directing a user to update logistics processes for the equipment system.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10438126B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Systems and methods for data estimation and forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nonato%20de%20Paula,%20Fabio&rft.date=2019-10-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10438126B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |