Electronic devices with magnetic and attractor materials and methods of fabrication

A magnetic cell includes an attracter material proximate to a magnetic region (e.g., a free region). The attracter material is formulated to have a higher chemical affinity for a diffusible species of a magnetic material, from which the magnetic region is formed, compared to a chemical affinity betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lyle, Andy, Siddik, Manzar, Kula, Witold
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lyle, Andy
Siddik, Manzar
Kula, Witold
description A magnetic cell includes an attracter material proximate to a magnetic region (e.g., a free region). The attracter material is formulated to have a higher chemical affinity for a diffusible species of a magnetic material, from which the magnetic region is formed, compared to a chemical affinity between the diffusible species and at least another species of the magnetic material. Thus, the diffusible species is removed from the magnetic material to the attracter material. The removal accommodates crystallization of the depleted magnetic material. The crystallized, depleted magnetic material enables a high tunnel magnetoresistance, high energy barrier, and high energy barrier ratio. The magnetic region may be formed as a continuous magnetic material, thus enabling a high exchange stiffness, and positioning the magnetic region between two magnetic anisotropy-inducing oxide regions enables a high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10396278B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10396278B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10396278B23</originalsourceid><addsrcrecordid>eNqNzE0KwkAMhuHZuBD1DvEAgrbgz1apuK-uS0wzbaCdlJmg13cQD-Dqg4eXb-7qamCyqEEIWn4JcYK3WA8jdoEtK4YW0CwimcbMxlFwSF8f2XptE6gHj88ohCYalm7mc8Gr3y7c-lrdL7cNT9pwmpA4XzePerctT_vicDwX5T_NB4IrOOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electronic devices with magnetic and attractor materials and methods of fabrication</title><source>esp@cenet</source><creator>Lyle, Andy ; Siddik, Manzar ; Kula, Witold</creator><creatorcontrib>Lyle, Andy ; Siddik, Manzar ; Kula, Witold</creatorcontrib><description>A magnetic cell includes an attracter material proximate to a magnetic region (e.g., a free region). The attracter material is formulated to have a higher chemical affinity for a diffusible species of a magnetic material, from which the magnetic region is formed, compared to a chemical affinity between the diffusible species and at least another species of the magnetic material. Thus, the diffusible species is removed from the magnetic material to the attracter material. The removal accommodates crystallization of the depleted magnetic material. The crystallized, depleted magnetic material enables a high tunnel magnetoresistance, high energy barrier, and high energy barrier ratio. The magnetic region may be formed as a continuous magnetic material, thus enabling a high exchange stiffness, and positioning the magnetic region between two magnetic anisotropy-inducing oxide regions enables a high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.</description><language>eng</language><subject>ELECTRICITY ; INFORMATION STORAGE ; PHYSICS ; STATIC STORES</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190827&amp;DB=EPODOC&amp;CC=US&amp;NR=10396278B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190827&amp;DB=EPODOC&amp;CC=US&amp;NR=10396278B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lyle, Andy</creatorcontrib><creatorcontrib>Siddik, Manzar</creatorcontrib><creatorcontrib>Kula, Witold</creatorcontrib><title>Electronic devices with magnetic and attractor materials and methods of fabrication</title><description>A magnetic cell includes an attracter material proximate to a magnetic region (e.g., a free region). The attracter material is formulated to have a higher chemical affinity for a diffusible species of a magnetic material, from which the magnetic region is formed, compared to a chemical affinity between the diffusible species and at least another species of the magnetic material. Thus, the diffusible species is removed from the magnetic material to the attracter material. The removal accommodates crystallization of the depleted magnetic material. The crystallized, depleted magnetic material enables a high tunnel magnetoresistance, high energy barrier, and high energy barrier ratio. The magnetic region may be formed as a continuous magnetic material, thus enabling a high exchange stiffness, and positioning the magnetic region between two magnetic anisotropy-inducing oxide regions enables a high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.</description><subject>ELECTRICITY</subject><subject>INFORMATION STORAGE</subject><subject>PHYSICS</subject><subject>STATIC STORES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzE0KwkAMhuHZuBD1DvEAgrbgz1apuK-uS0wzbaCdlJmg13cQD-Dqg4eXb-7qamCyqEEIWn4JcYK3WA8jdoEtK4YW0CwimcbMxlFwSF8f2XptE6gHj88ohCYalm7mc8Gr3y7c-lrdL7cNT9pwmpA4XzePerctT_vicDwX5T_NB4IrOOw</recordid><startdate>20190827</startdate><enddate>20190827</enddate><creator>Lyle, Andy</creator><creator>Siddik, Manzar</creator><creator>Kula, Witold</creator><scope>EVB</scope></search><sort><creationdate>20190827</creationdate><title>Electronic devices with magnetic and attractor materials and methods of fabrication</title><author>Lyle, Andy ; Siddik, Manzar ; Kula, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10396278B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ELECTRICITY</topic><topic>INFORMATION STORAGE</topic><topic>PHYSICS</topic><topic>STATIC STORES</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyle, Andy</creatorcontrib><creatorcontrib>Siddik, Manzar</creatorcontrib><creatorcontrib>Kula, Witold</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyle, Andy</au><au>Siddik, Manzar</au><au>Kula, Witold</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electronic devices with magnetic and attractor materials and methods of fabrication</title><date>2019-08-27</date><risdate>2019</risdate><abstract>A magnetic cell includes an attracter material proximate to a magnetic region (e.g., a free region). The attracter material is formulated to have a higher chemical affinity for a diffusible species of a magnetic material, from which the magnetic region is formed, compared to a chemical affinity between the diffusible species and at least another species of the magnetic material. Thus, the diffusible species is removed from the magnetic material to the attracter material. The removal accommodates crystallization of the depleted magnetic material. The crystallized, depleted magnetic material enables a high tunnel magnetoresistance, high energy barrier, and high energy barrier ratio. The magnetic region may be formed as a continuous magnetic material, thus enabling a high exchange stiffness, and positioning the magnetic region between two magnetic anisotropy-inducing oxide regions enables a high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10396278B2
source esp@cenet
subjects ELECTRICITY
INFORMATION STORAGE
PHYSICS
STATIC STORES
title Electronic devices with magnetic and attractor materials and methods of fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lyle,%20Andy&rft.date=2019-08-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10396278B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true