Automatic image correction using machine learning

In one embodiment, a computing system may access a training image and a reference image of a person and an incomplete image. A generate may generate an in-painted image based on the incomplete image, and a discriminator may be used to determine whether each of the in-painted image, the training imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morton, Jonathan, Ferrer, Cristian Canton, Dolhansky, Brian, Meyer, Thomas Ward
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Morton, Jonathan
Ferrer, Cristian Canton
Dolhansky, Brian
Meyer, Thomas Ward
description In one embodiment, a computing system may access a training image and a reference image of a person and an incomplete image. A generate may generate an in-painted image based on the incomplete image, and a discriminator may be used to determine whether each of the in-painted image, the training image, and the reference image is likely generated by the generator. The system may compute losses based on the determinations and update the discriminator accordingly. Using the updated discriminator, the system may determine whether a second in-painted image generated by the generator is likely generated by the generator. The system may compute a loss based on the determination and update the generator accordingly. Once training is complete, the generator may be used to generate a modified version of a given image, such as making the eyes of a person appear open even if they were closed in the input image.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10388002B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10388002B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10388002B23</originalsourceid><addsrcrecordid>eNrjZDB0LC3Jz00syUxWyMxNTE9VSM4vKkpNLsnMz1MoLc7MS1fITUzOyMxLVchJTSzKAwrwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDA2MLCwMDIycjY2LUAACzCCwF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic image correction using machine learning</title><source>esp@cenet</source><creator>Morton, Jonathan ; Ferrer, Cristian Canton ; Dolhansky, Brian ; Meyer, Thomas Ward</creator><creatorcontrib>Morton, Jonathan ; Ferrer, Cristian Canton ; Dolhansky, Brian ; Meyer, Thomas Ward</creatorcontrib><description>In one embodiment, a computing system may access a training image and a reference image of a person and an incomplete image. A generate may generate an in-painted image based on the incomplete image, and a discriminator may be used to determine whether each of the in-painted image, the training image, and the reference image is likely generated by the generator. The system may compute losses based on the determinations and update the discriminator accordingly. Using the updated discriminator, the system may determine whether a second in-painted image generated by the generator is likely generated by the generator. The system may compute a loss based on the determination and update the generator accordingly. Once training is complete, the generator may be used to generate a modified version of a given image, such as making the eyes of a person appear open even if they were closed in the input image.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190820&amp;DB=EPODOC&amp;CC=US&amp;NR=10388002B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190820&amp;DB=EPODOC&amp;CC=US&amp;NR=10388002B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Morton, Jonathan</creatorcontrib><creatorcontrib>Ferrer, Cristian Canton</creatorcontrib><creatorcontrib>Dolhansky, Brian</creatorcontrib><creatorcontrib>Meyer, Thomas Ward</creatorcontrib><title>Automatic image correction using machine learning</title><description>In one embodiment, a computing system may access a training image and a reference image of a person and an incomplete image. A generate may generate an in-painted image based on the incomplete image, and a discriminator may be used to determine whether each of the in-painted image, the training image, and the reference image is likely generated by the generator. The system may compute losses based on the determinations and update the discriminator accordingly. Using the updated discriminator, the system may determine whether a second in-painted image generated by the generator is likely generated by the generator. The system may compute a loss based on the determination and update the generator accordingly. Once training is complete, the generator may be used to generate a modified version of a given image, such as making the eyes of a person appear open even if they were closed in the input image.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB0LC3Jz00syUxWyMxNTE9VSM4vKkpNLsnMz1MoLc7MS1fITUzOyMxLVchJTSzKAwrwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDA2MLCwMDIycjY2LUAACzCCwF</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Morton, Jonathan</creator><creator>Ferrer, Cristian Canton</creator><creator>Dolhansky, Brian</creator><creator>Meyer, Thomas Ward</creator><scope>EVB</scope></search><sort><creationdate>20190820</creationdate><title>Automatic image correction using machine learning</title><author>Morton, Jonathan ; Ferrer, Cristian Canton ; Dolhansky, Brian ; Meyer, Thomas Ward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10388002B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Morton, Jonathan</creatorcontrib><creatorcontrib>Ferrer, Cristian Canton</creatorcontrib><creatorcontrib>Dolhansky, Brian</creatorcontrib><creatorcontrib>Meyer, Thomas Ward</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morton, Jonathan</au><au>Ferrer, Cristian Canton</au><au>Dolhansky, Brian</au><au>Meyer, Thomas Ward</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic image correction using machine learning</title><date>2019-08-20</date><risdate>2019</risdate><abstract>In one embodiment, a computing system may access a training image and a reference image of a person and an incomplete image. A generate may generate an in-painted image based on the incomplete image, and a discriminator may be used to determine whether each of the in-painted image, the training image, and the reference image is likely generated by the generator. The system may compute losses based on the determinations and update the discriminator accordingly. Using the updated discriminator, the system may determine whether a second in-painted image generated by the generator is likely generated by the generator. The system may compute a loss based on the determination and update the generator accordingly. Once training is complete, the generator may be used to generate a modified version of a given image, such as making the eyes of a person appear open even if they were closed in the input image.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10388002B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Automatic image correction using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Morton,%20Jonathan&rft.date=2019-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10388002B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true