Intelligent security management
A corpus of documents (and other data objects) stored for an entity can be analyzed to determine one or more topics for each document. Elements of the documents can be analyzed to also assign a risk score. The types of topics and security elements, and the associated risk scores, can be learned and...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Watson, Alexander Brim, Daniel Radulovic, Paul Bray, Tyler Stuart Rasgaitis, Jack Cai, Nai Qin Simmons, Christopher Brinkley, Jennifer Anne Chin, Victor Johnson, Eric Anger, Max Gough, Michael |
description | A corpus of documents (and other data objects) stored for an entity can be analyzed to determine one or more topics for each document. Elements of the documents can be analyzed to also assign a risk score. The types of topics and security elements, and the associated risk scores, can be learned and adapted over time using, for example, a topic model and random forest regressor. Activity with respect to the documents is monitored, and expected behavior for a user determined using a trained recurrent neural network. Ongoing user activity is processed to determine whether the activity excessively deviates from the expected user activity. The activity can also be compared against the activity of user peers to determine whether the activity is also anomalous among the user peer group. For anomalous activity, risk scores of the accessed documents can be analyzed to determine whether to generate an alert. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10320819B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10320819B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10320819B23</originalsourceid><addsrcrecordid>eNrjZJD3zCtJzcnJTE_NK1EoTk0uLcosqVTITcxLTE_NBYrxMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDA2MjAwtDSycjY2LUAABcACV-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent security management</title><source>esp@cenet</source><creator>Watson, Alexander ; Brim, Daniel ; Radulovic, Paul ; Bray, Tyler Stuart ; Rasgaitis, Jack ; Cai, Nai Qin ; Simmons, Christopher ; Brinkley, Jennifer Anne ; Chin, Victor ; Johnson, Eric ; Anger, Max ; Gough, Michael</creator><creatorcontrib>Watson, Alexander ; Brim, Daniel ; Radulovic, Paul ; Bray, Tyler Stuart ; Rasgaitis, Jack ; Cai, Nai Qin ; Simmons, Christopher ; Brinkley, Jennifer Anne ; Chin, Victor ; Johnson, Eric ; Anger, Max ; Gough, Michael</creatorcontrib><description>A corpus of documents (and other data objects) stored for an entity can be analyzed to determine one or more topics for each document. Elements of the documents can be analyzed to also assign a risk score. The types of topics and security elements, and the associated risk scores, can be learned and adapted over time using, for example, a topic model and random forest regressor. Activity with respect to the documents is monitored, and expected behavior for a user determined using a trained recurrent neural network. Ongoing user activity is processed to determine whether the activity excessively deviates from the expected user activity. The activity can also be compared against the activity of user peers to determine whether the activity is also anomalous among the user peer group. For anomalous activity, risk scores of the accessed documents can be analyzed to determine whether to generate an alert.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190611&DB=EPODOC&CC=US&NR=10320819B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190611&DB=EPODOC&CC=US&NR=10320819B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Watson, Alexander</creatorcontrib><creatorcontrib>Brim, Daniel</creatorcontrib><creatorcontrib>Radulovic, Paul</creatorcontrib><creatorcontrib>Bray, Tyler Stuart</creatorcontrib><creatorcontrib>Rasgaitis, Jack</creatorcontrib><creatorcontrib>Cai, Nai Qin</creatorcontrib><creatorcontrib>Simmons, Christopher</creatorcontrib><creatorcontrib>Brinkley, Jennifer Anne</creatorcontrib><creatorcontrib>Chin, Victor</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Anger, Max</creatorcontrib><creatorcontrib>Gough, Michael</creatorcontrib><title>Intelligent security management</title><description>A corpus of documents (and other data objects) stored for an entity can be analyzed to determine one or more topics for each document. Elements of the documents can be analyzed to also assign a risk score. The types of topics and security elements, and the associated risk scores, can be learned and adapted over time using, for example, a topic model and random forest regressor. Activity with respect to the documents is monitored, and expected behavior for a user determined using a trained recurrent neural network. Ongoing user activity is processed to determine whether the activity excessively deviates from the expected user activity. The activity can also be compared against the activity of user peers to determine whether the activity is also anomalous among the user peer group. For anomalous activity, risk scores of the accessed documents can be analyzed to determine whether to generate an alert.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJD3zCtJzcnJTE_NK1EoTk0uLcosqVTITcxLTE_NBYrxMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDA2MjAwtDSycjY2LUAABcACV-</recordid><startdate>20190611</startdate><enddate>20190611</enddate><creator>Watson, Alexander</creator><creator>Brim, Daniel</creator><creator>Radulovic, Paul</creator><creator>Bray, Tyler Stuart</creator><creator>Rasgaitis, Jack</creator><creator>Cai, Nai Qin</creator><creator>Simmons, Christopher</creator><creator>Brinkley, Jennifer Anne</creator><creator>Chin, Victor</creator><creator>Johnson, Eric</creator><creator>Anger, Max</creator><creator>Gough, Michael</creator><scope>EVB</scope></search><sort><creationdate>20190611</creationdate><title>Intelligent security management</title><author>Watson, Alexander ; Brim, Daniel ; Radulovic, Paul ; Bray, Tyler Stuart ; Rasgaitis, Jack ; Cai, Nai Qin ; Simmons, Christopher ; Brinkley, Jennifer Anne ; Chin, Victor ; Johnson, Eric ; Anger, Max ; Gough, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10320819B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Watson, Alexander</creatorcontrib><creatorcontrib>Brim, Daniel</creatorcontrib><creatorcontrib>Radulovic, Paul</creatorcontrib><creatorcontrib>Bray, Tyler Stuart</creatorcontrib><creatorcontrib>Rasgaitis, Jack</creatorcontrib><creatorcontrib>Cai, Nai Qin</creatorcontrib><creatorcontrib>Simmons, Christopher</creatorcontrib><creatorcontrib>Brinkley, Jennifer Anne</creatorcontrib><creatorcontrib>Chin, Victor</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Anger, Max</creatorcontrib><creatorcontrib>Gough, Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Watson, Alexander</au><au>Brim, Daniel</au><au>Radulovic, Paul</au><au>Bray, Tyler Stuart</au><au>Rasgaitis, Jack</au><au>Cai, Nai Qin</au><au>Simmons, Christopher</au><au>Brinkley, Jennifer Anne</au><au>Chin, Victor</au><au>Johnson, Eric</au><au>Anger, Max</au><au>Gough, Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent security management</title><date>2019-06-11</date><risdate>2019</risdate><abstract>A corpus of documents (and other data objects) stored for an entity can be analyzed to determine one or more topics for each document. Elements of the documents can be analyzed to also assign a risk score. The types of topics and security elements, and the associated risk scores, can be learned and adapted over time using, for example, a topic model and random forest regressor. Activity with respect to the documents is monitored, and expected behavior for a user determined using a trained recurrent neural network. Ongoing user activity is processed to determine whether the activity excessively deviates from the expected user activity. The activity can also be compared against the activity of user peers to determine whether the activity is also anomalous among the user peer group. For anomalous activity, risk scores of the accessed documents can be analyzed to determine whether to generate an alert.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10320819B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Intelligent security management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Watson,%20Alexander&rft.date=2019-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10320819B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |