Selectivity estimation using artificial neural networks

In an approach for generating a selectivity estimation, one or more processors generate an artificial neural network and receive a DBMS query comprising one or more predicates. One or more processors replace one or more predicates in the one or more predicates that have strict operators with one or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Corvinelli, Vincent, Xu, Mingbin, Zuzarte, Calisto P, Yu, Ziting, Liu, Huaxin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Corvinelli, Vincent
Xu, Mingbin
Zuzarte, Calisto P
Yu, Ziting
Liu, Huaxin
description In an approach for generating a selectivity estimation, one or more processors generate an artificial neural network and receive a DBMS query comprising one or more predicates. One or more processors replace one or more predicates in the one or more predicates that have strict operators with one or more predicates that have non-strict operators. One or more processors generate a selectivity function from the one or more predicates that has one or more arguments that are each comprised of an upper bound and a lower bound for a value in a predicate. One or more processors generate a training data set from a data distribution in the database and train the artificial neural network on the training data set to compute the selectivity function. One or more processors generate a selectivity estimation with the artificial neural network for one or more predicates in the DBMS query.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10318866B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10318866B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10318866B23</originalsourceid><addsrcrecordid>eNrjZDAPTs1JTS7JLMssqVRILS7JzE0syczPUygtzsxLV0gsKslMy0zOTMxRyEstLQJTJeX5RdnFPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTkVqDQ-NNjQwNjQwsLMzMnImBg1AEOzLwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Selectivity estimation using artificial neural networks</title><source>esp@cenet</source><creator>Corvinelli, Vincent ; Xu, Mingbin ; Zuzarte, Calisto P ; Yu, Ziting ; Liu, Huaxin</creator><creatorcontrib>Corvinelli, Vincent ; Xu, Mingbin ; Zuzarte, Calisto P ; Yu, Ziting ; Liu, Huaxin</creatorcontrib><description>In an approach for generating a selectivity estimation, one or more processors generate an artificial neural network and receive a DBMS query comprising one or more predicates. One or more processors replace one or more predicates in the one or more predicates that have strict operators with one or more predicates that have non-strict operators. One or more processors generate a selectivity function from the one or more predicates that has one or more arguments that are each comprised of an upper bound and a lower bound for a value in a predicate. One or more processors generate a training data set from a data distribution in the database and train the artificial neural network on the training data set to compute the selectivity function. One or more processors generate a selectivity estimation with the artificial neural network for one or more predicates in the DBMS query.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190611&amp;DB=EPODOC&amp;CC=US&amp;NR=10318866B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190611&amp;DB=EPODOC&amp;CC=US&amp;NR=10318866B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Corvinelli, Vincent</creatorcontrib><creatorcontrib>Xu, Mingbin</creatorcontrib><creatorcontrib>Zuzarte, Calisto P</creatorcontrib><creatorcontrib>Yu, Ziting</creatorcontrib><creatorcontrib>Liu, Huaxin</creatorcontrib><title>Selectivity estimation using artificial neural networks</title><description>In an approach for generating a selectivity estimation, one or more processors generate an artificial neural network and receive a DBMS query comprising one or more predicates. One or more processors replace one or more predicates in the one or more predicates that have strict operators with one or more predicates that have non-strict operators. One or more processors generate a selectivity function from the one or more predicates that has one or more arguments that are each comprised of an upper bound and a lower bound for a value in a predicate. One or more processors generate a training data set from a data distribution in the database and train the artificial neural network on the training data set to compute the selectivity function. One or more processors generate a selectivity estimation with the artificial neural network for one or more predicates in the DBMS query.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPTs1JTS7JLMssqVRILS7JzE0syczPUygtzsxLV0gsKslMy0zOTMxRyEstLQJTJeX5RdnFPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTkVqDQ-NNjQwNjQwsLMzMnImBg1AEOzLwg</recordid><startdate>20190611</startdate><enddate>20190611</enddate><creator>Corvinelli, Vincent</creator><creator>Xu, Mingbin</creator><creator>Zuzarte, Calisto P</creator><creator>Yu, Ziting</creator><creator>Liu, Huaxin</creator><scope>EVB</scope></search><sort><creationdate>20190611</creationdate><title>Selectivity estimation using artificial neural networks</title><author>Corvinelli, Vincent ; Xu, Mingbin ; Zuzarte, Calisto P ; Yu, Ziting ; Liu, Huaxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10318866B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Corvinelli, Vincent</creatorcontrib><creatorcontrib>Xu, Mingbin</creatorcontrib><creatorcontrib>Zuzarte, Calisto P</creatorcontrib><creatorcontrib>Yu, Ziting</creatorcontrib><creatorcontrib>Liu, Huaxin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Corvinelli, Vincent</au><au>Xu, Mingbin</au><au>Zuzarte, Calisto P</au><au>Yu, Ziting</au><au>Liu, Huaxin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Selectivity estimation using artificial neural networks</title><date>2019-06-11</date><risdate>2019</risdate><abstract>In an approach for generating a selectivity estimation, one or more processors generate an artificial neural network and receive a DBMS query comprising one or more predicates. One or more processors replace one or more predicates in the one or more predicates that have strict operators with one or more predicates that have non-strict operators. One or more processors generate a selectivity function from the one or more predicates that has one or more arguments that are each comprised of an upper bound and a lower bound for a value in a predicate. One or more processors generate a training data set from a data distribution in the database and train the artificial neural network on the training data set to compute the selectivity function. One or more processors generate a selectivity estimation with the artificial neural network for one or more predicates in the DBMS query.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10318866B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Selectivity estimation using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Corvinelli,%20Vincent&rft.date=2019-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10318866B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true