Machine learning based content delivery

Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chong, Min, Dirac, Leo Parker, Chor, Anthony T, Granade, Kevin Andrew, Bowman, Bradley Scott, Scott, Sean Michael, Cerda, Paul Christopher, Pant, Udip, Hotchkies, Blair Livingstone
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chong, Min
Dirac, Leo Parker
Chor, Anthony T
Granade, Kevin Andrew
Bowman, Bradley Scott
Scott, Sean Michael
Cerda, Paul Christopher
Pant, Udip
Hotchkies, Blair Livingstone
description Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10311372B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10311372B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10311372B13</originalsourceid><addsrcrecordid>eNrjZFD3TUzOyMxLVchJTSzKy8xLV0hKLE5NUUjOzytJzStRSEnNySxLLarkYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBsaGhsbmRk6GxsSoAQCg3CgH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning based content delivery</title><source>esp@cenet</source><creator>Chong, Min ; Dirac, Leo Parker ; Chor, Anthony T ; Granade, Kevin Andrew ; Bowman, Bradley Scott ; Scott, Sean Michael ; Cerda, Paul Christopher ; Pant, Udip ; Hotchkies, Blair Livingstone</creator><creatorcontrib>Chong, Min ; Dirac, Leo Parker ; Chor, Anthony T ; Granade, Kevin Andrew ; Bowman, Bradley Scott ; Scott, Sean Michael ; Cerda, Paul Christopher ; Pant, Udip ; Hotchkies, Blair Livingstone</creatorcontrib><description>Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190604&amp;DB=EPODOC&amp;CC=US&amp;NR=10311372B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190604&amp;DB=EPODOC&amp;CC=US&amp;NR=10311372B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chong, Min</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Chor, Anthony T</creatorcontrib><creatorcontrib>Granade, Kevin Andrew</creatorcontrib><creatorcontrib>Bowman, Bradley Scott</creatorcontrib><creatorcontrib>Scott, Sean Michael</creatorcontrib><creatorcontrib>Cerda, Paul Christopher</creatorcontrib><creatorcontrib>Pant, Udip</creatorcontrib><creatorcontrib>Hotchkies, Blair Livingstone</creatorcontrib><title>Machine learning based content delivery</title><description>Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD3TUzOyMxLVchJTSzKy8xLV0hKLE5NUUjOzytJzStRSEnNySxLLarkYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBsaGhsbmRk6GxsSoAQCg3CgH</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Chong, Min</creator><creator>Dirac, Leo Parker</creator><creator>Chor, Anthony T</creator><creator>Granade, Kevin Andrew</creator><creator>Bowman, Bradley Scott</creator><creator>Scott, Sean Michael</creator><creator>Cerda, Paul Christopher</creator><creator>Pant, Udip</creator><creator>Hotchkies, Blair Livingstone</creator><scope>EVB</scope></search><sort><creationdate>20190604</creationdate><title>Machine learning based content delivery</title><author>Chong, Min ; Dirac, Leo Parker ; Chor, Anthony T ; Granade, Kevin Andrew ; Bowman, Bradley Scott ; Scott, Sean Michael ; Cerda, Paul Christopher ; Pant, Udip ; Hotchkies, Blair Livingstone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10311372B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chong, Min</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Chor, Anthony T</creatorcontrib><creatorcontrib>Granade, Kevin Andrew</creatorcontrib><creatorcontrib>Bowman, Bradley Scott</creatorcontrib><creatorcontrib>Scott, Sean Michael</creatorcontrib><creatorcontrib>Cerda, Paul Christopher</creatorcontrib><creatorcontrib>Pant, Udip</creatorcontrib><creatorcontrib>Hotchkies, Blair Livingstone</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Min</au><au>Dirac, Leo Parker</au><au>Chor, Anthony T</au><au>Granade, Kevin Andrew</au><au>Bowman, Bradley Scott</au><au>Scott, Sean Michael</au><au>Cerda, Paul Christopher</au><au>Pant, Udip</au><au>Hotchkies, Blair Livingstone</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning based content delivery</title><date>2019-06-04</date><risdate>2019</risdate><abstract>Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10311372B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Machine learning based content delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chong,%20Min&rft.date=2019-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10311372B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true