Machine learning based content delivery
Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for res...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chong, Min Dirac, Leo Parker Chor, Anthony T Granade, Kevin Andrew Bowman, Bradley Scott Scott, Sean Michael Cerda, Paul Christopher Pant, Udip Hotchkies, Blair Livingstone |
description | Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10311372B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10311372B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10311372B13</originalsourceid><addsrcrecordid>eNrjZFD3TUzOyMxLVchJTSzKy8xLV0hKLE5NUUjOzytJzStRSEnNySxLLarkYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBsaGhsbmRk6GxsSoAQCg3CgH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning based content delivery</title><source>esp@cenet</source><creator>Chong, Min ; Dirac, Leo Parker ; Chor, Anthony T ; Granade, Kevin Andrew ; Bowman, Bradley Scott ; Scott, Sean Michael ; Cerda, Paul Christopher ; Pant, Udip ; Hotchkies, Blair Livingstone</creator><creatorcontrib>Chong, Min ; Dirac, Leo Parker ; Chor, Anthony T ; Granade, Kevin Andrew ; Bowman, Bradley Scott ; Scott, Sean Michael ; Cerda, Paul Christopher ; Pant, Udip ; Hotchkies, Blair Livingstone</creatorcontrib><description>Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190604&DB=EPODOC&CC=US&NR=10311372B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190604&DB=EPODOC&CC=US&NR=10311372B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chong, Min</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Chor, Anthony T</creatorcontrib><creatorcontrib>Granade, Kevin Andrew</creatorcontrib><creatorcontrib>Bowman, Bradley Scott</creatorcontrib><creatorcontrib>Scott, Sean Michael</creatorcontrib><creatorcontrib>Cerda, Paul Christopher</creatorcontrib><creatorcontrib>Pant, Udip</creatorcontrib><creatorcontrib>Hotchkies, Blair Livingstone</creatorcontrib><title>Machine learning based content delivery</title><description>Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD3TUzOyMxLVchJTSzKy8xLV0hKLE5NUUjOzytJzStRSEnNySxLLarkYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBsaGhsbmRk6GxsSoAQCg3CgH</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Chong, Min</creator><creator>Dirac, Leo Parker</creator><creator>Chor, Anthony T</creator><creator>Granade, Kevin Andrew</creator><creator>Bowman, Bradley Scott</creator><creator>Scott, Sean Michael</creator><creator>Cerda, Paul Christopher</creator><creator>Pant, Udip</creator><creator>Hotchkies, Blair Livingstone</creator><scope>EVB</scope></search><sort><creationdate>20190604</creationdate><title>Machine learning based content delivery</title><author>Chong, Min ; Dirac, Leo Parker ; Chor, Anthony T ; Granade, Kevin Andrew ; Bowman, Bradley Scott ; Scott, Sean Michael ; Cerda, Paul Christopher ; Pant, Udip ; Hotchkies, Blair Livingstone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10311372B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chong, Min</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Chor, Anthony T</creatorcontrib><creatorcontrib>Granade, Kevin Andrew</creatorcontrib><creatorcontrib>Bowman, Bradley Scott</creatorcontrib><creatorcontrib>Scott, Sean Michael</creatorcontrib><creatorcontrib>Cerda, Paul Christopher</creatorcontrib><creatorcontrib>Pant, Udip</creatorcontrib><creatorcontrib>Hotchkies, Blair Livingstone</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Min</au><au>Dirac, Leo Parker</au><au>Chor, Anthony T</au><au>Granade, Kevin Andrew</au><au>Bowman, Bradley Scott</au><au>Scott, Sean Michael</au><au>Cerda, Paul Christopher</au><au>Pant, Udip</au><au>Hotchkies, Blair Livingstone</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning based content delivery</title><date>2019-06-04</date><risdate>2019</risdate><abstract>Systems and methods for managing content delivery functionalities based on machine learning models are provided. In one aspect, content requests are routed in accordance with clusters of historical content requests to optimize cache performance. In another aspect, content delivery strategies for responding to content requests are determined based on a model trained on data related to historical content requests. The model may also be used to determine above-the-fold configurations for rendering responses to content requests. In some embodiments, portions of the model can be executed on client computing devices.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10311372B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Machine learning based content delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chong,%20Min&rft.date=2019-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10311372B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |