Distributing data analytics in a hierarchical network based on computational complexity
A method provided in a network including edge devices to collect data from data producers connected to the edge devices and to communicate with cloud-based prosumers connected with the edge devices. Data analytics tasks are identified. The data analytics tasks are used to process data collected from...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Maluf, David A Bernstein, Alon S Ward, David D Nedeltchev, Plamen |
description | A method provided in a network including edge devices to collect data from data producers connected to the edge devices and to communicate with cloud-based prosumers connected with the edge devices. Data analytics tasks are identified. The data analytics tasks are used to process data collected from a data producer among the data producers to produce a result for consumption by one or more of the cloud-based prosumers. For each data analytics task it is determined whether a computational complexity of the data analytics task is less than or equal to a predetermined computational complexity. Each data analytics task determined to have a computational complexity less than or equal to the predetermined computational complexity is assigned to an edge device among the edge devices. Each data analytics task determined to have a computational complexity that exceeds the predetermined computational complexity is assigned to a prosumer among the prosumers. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10291494B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10291494B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10291494B23</originalsourceid><addsrcrecordid>eNqNjD0KwkAQRrexEPUO4wEEE9Ok9Q97Fcsw2UzM4Dq77E7Q3N4gHsDq48F739Tc9pw0ct0ryx0aVAQUdIOyTcACCB1TxGg7tuhASF8-PqDGRA14AeufoVdU9mP1JUdv1mFuJi26RIvfzszyeLjsTisKvqIU0NL4VV3P2Tovs6IstvnmH-cDs5U60w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distributing data analytics in a hierarchical network based on computational complexity</title><source>esp@cenet</source><creator>Maluf, David A ; Bernstein, Alon S ; Ward, David D ; Nedeltchev, Plamen</creator><creatorcontrib>Maluf, David A ; Bernstein, Alon S ; Ward, David D ; Nedeltchev, Plamen</creatorcontrib><description>A method provided in a network including edge devices to collect data from data producers connected to the edge devices and to communicate with cloud-based prosumers connected with the edge devices. Data analytics tasks are identified. The data analytics tasks are used to process data collected from a data producer among the data producers to produce a result for consumption by one or more of the cloud-based prosumers. For each data analytics task it is determined whether a computational complexity of the data analytics task is less than or equal to a predetermined computational complexity. Each data analytics task determined to have a computational complexity less than or equal to the predetermined computational complexity is assigned to an edge device among the edge devices. Each data analytics task determined to have a computational complexity that exceeds the predetermined computational complexity is assigned to a prosumer among the prosumers.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190514&DB=EPODOC&CC=US&NR=10291494B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190514&DB=EPODOC&CC=US&NR=10291494B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Maluf, David A</creatorcontrib><creatorcontrib>Bernstein, Alon S</creatorcontrib><creatorcontrib>Ward, David D</creatorcontrib><creatorcontrib>Nedeltchev, Plamen</creatorcontrib><title>Distributing data analytics in a hierarchical network based on computational complexity</title><description>A method provided in a network including edge devices to collect data from data producers connected to the edge devices and to communicate with cloud-based prosumers connected with the edge devices. Data analytics tasks are identified. The data analytics tasks are used to process data collected from a data producer among the data producers to produce a result for consumption by one or more of the cloud-based prosumers. For each data analytics task it is determined whether a computational complexity of the data analytics task is less than or equal to a predetermined computational complexity. Each data analytics task determined to have a computational complexity less than or equal to the predetermined computational complexity is assigned to an edge device among the edge devices. Each data analytics task determined to have a computational complexity that exceeds the predetermined computational complexity is assigned to a prosumer among the prosumers.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjD0KwkAQRrexEPUO4wEEE9Ok9Q97Fcsw2UzM4Dq77E7Q3N4gHsDq48F739Tc9pw0ct0ryx0aVAQUdIOyTcACCB1TxGg7tuhASF8-PqDGRA14AeufoVdU9mP1JUdv1mFuJi26RIvfzszyeLjsTisKvqIU0NL4VV3P2Tovs6IstvnmH-cDs5U60w</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Maluf, David A</creator><creator>Bernstein, Alon S</creator><creator>Ward, David D</creator><creator>Nedeltchev, Plamen</creator><scope>EVB</scope></search><sort><creationdate>20190514</creationdate><title>Distributing data analytics in a hierarchical network based on computational complexity</title><author>Maluf, David A ; Bernstein, Alon S ; Ward, David D ; Nedeltchev, Plamen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10291494B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Maluf, David A</creatorcontrib><creatorcontrib>Bernstein, Alon S</creatorcontrib><creatorcontrib>Ward, David D</creatorcontrib><creatorcontrib>Nedeltchev, Plamen</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maluf, David A</au><au>Bernstein, Alon S</au><au>Ward, David D</au><au>Nedeltchev, Plamen</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distributing data analytics in a hierarchical network based on computational complexity</title><date>2019-05-14</date><risdate>2019</risdate><abstract>A method provided in a network including edge devices to collect data from data producers connected to the edge devices and to communicate with cloud-based prosumers connected with the edge devices. Data analytics tasks are identified. The data analytics tasks are used to process data collected from a data producer among the data producers to produce a result for consumption by one or more of the cloud-based prosumers. For each data analytics task it is determined whether a computational complexity of the data analytics task is less than or equal to a predetermined computational complexity. Each data analytics task determined to have a computational complexity less than or equal to the predetermined computational complexity is assigned to an edge device among the edge devices. Each data analytics task determined to have a computational complexity that exceeds the predetermined computational complexity is assigned to a prosumer among the prosumers.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10291494B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Distributing data analytics in a hierarchical network based on computational complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Maluf,%20David%20A&rft.date=2019-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10291494B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |