Film deposition method
A film deposition method for forming a film of a reaction product includes adsorbing a first process gas to a surface of a substrate; reacting the first process gas and a second process gas to generate a reaction product; and modifying a surface of the reaction product by plasma activating a plasma...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Miura, Shigehiro |
description | A film deposition method for forming a film of a reaction product includes adsorbing a first process gas to a surface of a substrate; reacting the first process gas and a second process gas to generate a reaction product; and modifying a surface of the reaction product by plasma activating a plasma processing gas and supplying the plasma processing gas to the substrate, wherein in the modifying the surface of the reaction product, a first plasma processing gas is supplied to form a flow of the first plasma processing gas in a direction parallel to the surface of the substrate over an entire surface of the substrate, and also a second plasma processing gas containing hydrogen containing gas is supplied at an upstream side of the flow of the first plasma processing gas in the direction parallel to the surface of the substrate. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10287675B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10287675B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10287675B23</originalsourceid><addsrcrecordid>eNrjZBBzy8zJVUhJLcgvzizJzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrpAhfGpxQWJyal5qSXxocGGBkYW5mbmpk5GxsSoAQCmYCHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Film deposition method</title><source>esp@cenet</source><creator>Miura, Shigehiro</creator><creatorcontrib>Miura, Shigehiro</creatorcontrib><description>A film deposition method for forming a film of a reaction product includes adsorbing a first process gas to a surface of a substrate; reacting the first process gas and a second process gas to generate a reaction product; and modifying a surface of the reaction product by plasma activating a plasma processing gas and supplying the plasma processing gas to the substrate, wherein in the modifying the surface of the reaction product, a first plasma processing gas is supplied to form a flow of the first plasma processing gas in a direction parallel to the surface of the substrate over an entire surface of the substrate, and also a second plasma processing gas containing hydrogen containing gas is supplied at an upstream side of the flow of the first plasma processing gas in the direction parallel to the surface of the substrate.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS ; ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PLASMA TECHNIQUE ; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS ; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190514&DB=EPODOC&CC=US&NR=10287675B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190514&DB=EPODOC&CC=US&NR=10287675B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Miura, Shigehiro</creatorcontrib><title>Film deposition method</title><description>A film deposition method for forming a film of a reaction product includes adsorbing a first process gas to a surface of a substrate; reacting the first process gas and a second process gas to generate a reaction product; and modifying a surface of the reaction product by plasma activating a plasma processing gas and supplying the plasma processing gas to the substrate, wherein in the modifying the surface of the reaction product, a first plasma processing gas is supplied to form a flow of the first plasma processing gas in a direction parallel to the surface of the substrate over an entire surface of the substrate, and also a second plasma processing gas containing hydrogen containing gas is supplied at an upstream side of the flow of the first plasma processing gas in the direction parallel to the surface of the substrate.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</subject><subject>ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PLASMA TECHNIQUE</subject><subject>PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS</subject><subject>PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBBzy8zJVUhJLcgvzizJzM9TyE0tychP4WFgTUvMKU7lhdLcDIpuriHOHrpAhfGpxQWJyal5qSXxocGGBkYW5mbmpk5GxsSoAQCmYCHA</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Miura, Shigehiro</creator><scope>EVB</scope></search><sort><creationdate>20190514</creationdate><title>Film deposition method</title><author>Miura, Shigehiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10287675B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</topic><topic>ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PLASMA TECHNIQUE</topic><topic>PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS</topic><topic>PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>Miura, Shigehiro</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miura, Shigehiro</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Film deposition method</title><date>2019-05-14</date><risdate>2019</risdate><abstract>A film deposition method for forming a film of a reaction product includes adsorbing a first process gas to a surface of a substrate; reacting the first process gas and a second process gas to generate a reaction product; and modifying a surface of the reaction product by plasma activating a plasma processing gas and supplying the plasma processing gas to the substrate, wherein in the modifying the surface of the reaction product, a first plasma processing gas is supplied to form a flow of the first plasma processing gas in a direction parallel to the surface of the substrate over an entire surface of the substrate, and also a second plasma processing gas containing hydrogen containing gas is supplied at an upstream side of the flow of the first plasma processing gas in the direction parallel to the surface of the substrate.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10287675B2 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PLASMA TECHNIQUE PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | Film deposition method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Miura,%20Shigehiro&rft.date=2019-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10287675B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |