Graph long short term memory for syntactic relationship discovery
Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Yih, Wen-tau Quirk, Christopher Brian Toutanova, Kristina Nikolova Poon, Hoifung Peng, Nanyun |
description | Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10255269B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10255269B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10255269B23</originalsourceid><addsrcrecordid>eNqNyjsKAjEQANA0FqLeYTyAoJEVLN3FT6_WS4izJpBkwswg5PY2HsDqNW9uTld2NUCi8gYJxAqKnCFjJm4wEYO0os5r9MCYnEYqEmKFVxRPH-S2NLPJJcHVz4VZX86P4bbBSiNKdR4L6vi877a26-zh2Nv9P-cLRwUyfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Graph long short term memory for syntactic relationship discovery</title><source>esp@cenet</source><creator>Yih, Wen-tau ; Quirk, Christopher Brian ; Toutanova, Kristina Nikolova ; Poon, Hoifung ; Peng, Nanyun</creator><creatorcontrib>Yih, Wen-tau ; Quirk, Christopher Brian ; Toutanova, Kristina Nikolova ; Poon, Hoifung ; Peng, Nanyun</creatorcontrib><description>Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190409&DB=EPODOC&CC=US&NR=10255269B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190409&DB=EPODOC&CC=US&NR=10255269B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yih, Wen-tau</creatorcontrib><creatorcontrib>Quirk, Christopher Brian</creatorcontrib><creatorcontrib>Toutanova, Kristina Nikolova</creatorcontrib><creatorcontrib>Poon, Hoifung</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><title>Graph long short term memory for syntactic relationship discovery</title><description>Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsKAjEQANA0FqLeYTyAoJEVLN3FT6_WS4izJpBkwswg5PY2HsDqNW9uTld2NUCi8gYJxAqKnCFjJm4wEYO0os5r9MCYnEYqEmKFVxRPH-S2NLPJJcHVz4VZX86P4bbBSiNKdR4L6vi877a26-zh2Nv9P-cLRwUyfg</recordid><startdate>20190409</startdate><enddate>20190409</enddate><creator>Yih, Wen-tau</creator><creator>Quirk, Christopher Brian</creator><creator>Toutanova, Kristina Nikolova</creator><creator>Poon, Hoifung</creator><creator>Peng, Nanyun</creator><scope>EVB</scope></search><sort><creationdate>20190409</creationdate><title>Graph long short term memory for syntactic relationship discovery</title><author>Yih, Wen-tau ; Quirk, Christopher Brian ; Toutanova, Kristina Nikolova ; Poon, Hoifung ; Peng, Nanyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10255269B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Yih, Wen-tau</creatorcontrib><creatorcontrib>Quirk, Christopher Brian</creatorcontrib><creatorcontrib>Toutanova, Kristina Nikolova</creatorcontrib><creatorcontrib>Poon, Hoifung</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yih, Wen-tau</au><au>Quirk, Christopher Brian</au><au>Toutanova, Kristina Nikolova</au><au>Poon, Hoifung</au><au>Peng, Nanyun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Graph long short term memory for syntactic relationship discovery</title><date>2019-04-09</date><risdate>2019</risdate><abstract>Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10255269B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Graph long short term memory for syntactic relationship discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yih,%20Wen-tau&rft.date=2019-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10255269B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |