Graph long short term memory for syntactic relationship discovery

Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yih, Wen-tau, Quirk, Christopher Brian, Toutanova, Kristina Nikolova, Poon, Hoifung, Peng, Nanyun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yih, Wen-tau
Quirk, Christopher Brian
Toutanova, Kristina Nikolova
Poon, Hoifung
Peng, Nanyun
description Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10255269B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10255269B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10255269B23</originalsourceid><addsrcrecordid>eNqNyjsKAjEQANA0FqLeYTyAoJEVLN3FT6_WS4izJpBkwswg5PY2HsDqNW9uTld2NUCi8gYJxAqKnCFjJm4wEYO0os5r9MCYnEYqEmKFVxRPH-S2NLPJJcHVz4VZX86P4bbBSiNKdR4L6vi877a26-zh2Nv9P-cLRwUyfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Graph long short term memory for syntactic relationship discovery</title><source>esp@cenet</source><creator>Yih, Wen-tau ; Quirk, Christopher Brian ; Toutanova, Kristina Nikolova ; Poon, Hoifung ; Peng, Nanyun</creator><creatorcontrib>Yih, Wen-tau ; Quirk, Christopher Brian ; Toutanova, Kristina Nikolova ; Poon, Hoifung ; Peng, Nanyun</creatorcontrib><description>Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190409&amp;DB=EPODOC&amp;CC=US&amp;NR=10255269B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190409&amp;DB=EPODOC&amp;CC=US&amp;NR=10255269B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yih, Wen-tau</creatorcontrib><creatorcontrib>Quirk, Christopher Brian</creatorcontrib><creatorcontrib>Toutanova, Kristina Nikolova</creatorcontrib><creatorcontrib>Poon, Hoifung</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><title>Graph long short term memory for syntactic relationship discovery</title><description>Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsKAjEQANA0FqLeYTyAoJEVLN3FT6_WS4izJpBkwswg5PY2HsDqNW9uTld2NUCi8gYJxAqKnCFjJm4wEYO0os5r9MCYnEYqEmKFVxRPH-S2NLPJJcHVz4VZX86P4bbBSiNKdR4L6vi877a26-zh2Nv9P-cLRwUyfg</recordid><startdate>20190409</startdate><enddate>20190409</enddate><creator>Yih, Wen-tau</creator><creator>Quirk, Christopher Brian</creator><creator>Toutanova, Kristina Nikolova</creator><creator>Poon, Hoifung</creator><creator>Peng, Nanyun</creator><scope>EVB</scope></search><sort><creationdate>20190409</creationdate><title>Graph long short term memory for syntactic relationship discovery</title><author>Yih, Wen-tau ; Quirk, Christopher Brian ; Toutanova, Kristina Nikolova ; Poon, Hoifung ; Peng, Nanyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10255269B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Yih, Wen-tau</creatorcontrib><creatorcontrib>Quirk, Christopher Brian</creatorcontrib><creatorcontrib>Toutanova, Kristina Nikolova</creatorcontrib><creatorcontrib>Poon, Hoifung</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yih, Wen-tau</au><au>Quirk, Christopher Brian</au><au>Toutanova, Kristina Nikolova</au><au>Poon, Hoifung</au><au>Peng, Nanyun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Graph long short term memory for syntactic relationship discovery</title><date>2019-04-09</date><risdate>2019</risdate><abstract>Long short term memory units that accept a non-predefined number of inputs are used to provide natural language relation extraction over a user-specified range on content. Content written for human consumption is parsed with distant supervision in segments (e.g., sentences, paragraphs, chapters) to determine relationships between various words within and between those segments.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10255269B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Graph long short term memory for syntactic relationship discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yih,%20Wen-tau&rft.date=2019-04-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10255269B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true