Magnetocaloric cascade and method for fabricating a magnetocaloric cascade
A magnetocaloric cascade contains a sequence of magnetocaloric material layers having different Curie temperatures TC, wherein the magnetocaloric material layers include a cold-side outer layer, a hot-side outer layer and at least three inner layers between the cold-side outer layer and the hot-side...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Scharf, Florian Schwind, Markus Jacobs, Steven Alan Van Asten, David |
description | A magnetocaloric cascade contains a sequence of magnetocaloric material layers having different Curie temperatures TC, wherein the magnetocaloric material layers include a cold-side outer layer, a hot-side outer layer and at least three inner layers between the cold-side outer layer and the hot-side outer layer, and each pair of next neighboring magnetocaloric layers of the magnetocaloric cascade has a respective Curie-temperature difference amount ΔTC between their respective Curie temperatures, wherein the hot-side outer layer or the cold-side outer layer or both the hot-side and cold-side outer layer exhibits a larger ratio mΔSmax/ΔTC in comparison with any of the inner layers, m denoting the mass of the respective magnetocaloric material layer and ΔSmax denoting a maximum amount of isothermal magnetic entropy change achievable in a magnetic phase transition of the respective magnetocaloric material layer. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10229775B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10229775B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10229775B23</originalsourceid><addsrcrecordid>eNrjZPDyTUzPSy3JT07MyS_KTFZITixOTkxJVUjMS1HITS3JyE9RSMsvUkhLTALKJpZk5qUrJCrkYtXDw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1OBuuJDgw0NjIwszc1NnYyMiVEDACCCNTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Magnetocaloric cascade and method for fabricating a magnetocaloric cascade</title><source>esp@cenet</source><creator>Scharf, Florian ; Schwind, Markus ; Jacobs, Steven Alan ; Van Asten, David</creator><creatorcontrib>Scharf, Florian ; Schwind, Markus ; Jacobs, Steven Alan ; Van Asten, David</creatorcontrib><description>A magnetocaloric cascade contains a sequence of magnetocaloric material layers having different Curie temperatures TC, wherein the magnetocaloric material layers include a cold-side outer layer, a hot-side outer layer and at least three inner layers between the cold-side outer layer and the hot-side outer layer, and each pair of next neighboring magnetocaloric layers of the magnetocaloric cascade has a respective Curie-temperature difference amount ΔTC between their respective Curie temperatures, wherein the hot-side outer layer or the cold-side outer layer or both the hot-side and cold-side outer layer exhibits a larger ratio mΔSmax/ΔTC in comparison with any of the inner layers, m denoting the mass of the respective magnetocaloric material layer and ΔSmax denoting a maximum amount of isothermal magnetic entropy change achievable in a magnetic phase transition of the respective magnetocaloric material layer.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; BLASTING ; COMBINED HEATING AND REFRIGERATION SYSTEMS ; ELECTRICITY ; HEAT PUMP SYSTEMS ; HEATING ; INDUCTANCES ; LIGHTING ; LIQUEFACTION SOLIDIFICATION OF GASES ; MAGNETS ; MANUFACTURE OR STORAGE OF ICE ; MECHANICAL ENGINEERING ; REFRIGERATION MACHINES, PLANTS OR SYSTEMS ; REFRIGERATION OR COOLING ; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES ; TRANSFORMERS ; WEAPONS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190312&DB=EPODOC&CC=US&NR=10229775B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190312&DB=EPODOC&CC=US&NR=10229775B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Scharf, Florian</creatorcontrib><creatorcontrib>Schwind, Markus</creatorcontrib><creatorcontrib>Jacobs, Steven Alan</creatorcontrib><creatorcontrib>Van Asten, David</creatorcontrib><title>Magnetocaloric cascade and method for fabricating a magnetocaloric cascade</title><description>A magnetocaloric cascade contains a sequence of magnetocaloric material layers having different Curie temperatures TC, wherein the magnetocaloric material layers include a cold-side outer layer, a hot-side outer layer and at least three inner layers between the cold-side outer layer and the hot-side outer layer, and each pair of next neighboring magnetocaloric layers of the magnetocaloric cascade has a respective Curie-temperature difference amount ΔTC between their respective Curie temperatures, wherein the hot-side outer layer or the cold-side outer layer or both the hot-side and cold-side outer layer exhibits a larger ratio mΔSmax/ΔTC in comparison with any of the inner layers, m denoting the mass of the respective magnetocaloric material layer and ΔSmax denoting a maximum amount of isothermal magnetic entropy change achievable in a magnetic phase transition of the respective magnetocaloric material layer.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>BLASTING</subject><subject>COMBINED HEATING AND REFRIGERATION SYSTEMS</subject><subject>ELECTRICITY</subject><subject>HEAT PUMP SYSTEMS</subject><subject>HEATING</subject><subject>INDUCTANCES</subject><subject>LIGHTING</subject><subject>LIQUEFACTION SOLIDIFICATION OF GASES</subject><subject>MAGNETS</subject><subject>MANUFACTURE OR STORAGE OF ICE</subject><subject>MECHANICAL ENGINEERING</subject><subject>REFRIGERATION MACHINES, PLANTS OR SYSTEMS</subject><subject>REFRIGERATION OR COOLING</subject><subject>SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES</subject><subject>TRANSFORMERS</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDyTUzPSy3JT07MyS_KTFZITixOTkxJVUjMS1HITS3JyE9RSMsvUkhLTALKJpZk5qUrJCrkYtXDw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1OBuuJDgw0NjIwszc1NnYyMiVEDACCCNTU</recordid><startdate>20190312</startdate><enddate>20190312</enddate><creator>Scharf, Florian</creator><creator>Schwind, Markus</creator><creator>Jacobs, Steven Alan</creator><creator>Van Asten, David</creator><scope>EVB</scope></search><sort><creationdate>20190312</creationdate><title>Magnetocaloric cascade and method for fabricating a magnetocaloric cascade</title><author>Scharf, Florian ; Schwind, Markus ; Jacobs, Steven Alan ; Van Asten, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10229775B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>BLASTING</topic><topic>COMBINED HEATING AND REFRIGERATION SYSTEMS</topic><topic>ELECTRICITY</topic><topic>HEAT PUMP SYSTEMS</topic><topic>HEATING</topic><topic>INDUCTANCES</topic><topic>LIGHTING</topic><topic>LIQUEFACTION SOLIDIFICATION OF GASES</topic><topic>MAGNETS</topic><topic>MANUFACTURE OR STORAGE OF ICE</topic><topic>MECHANICAL ENGINEERING</topic><topic>REFRIGERATION MACHINES, PLANTS OR SYSTEMS</topic><topic>REFRIGERATION OR COOLING</topic><topic>SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES</topic><topic>TRANSFORMERS</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Scharf, Florian</creatorcontrib><creatorcontrib>Schwind, Markus</creatorcontrib><creatorcontrib>Jacobs, Steven Alan</creatorcontrib><creatorcontrib>Van Asten, David</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scharf, Florian</au><au>Schwind, Markus</au><au>Jacobs, Steven Alan</au><au>Van Asten, David</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Magnetocaloric cascade and method for fabricating a magnetocaloric cascade</title><date>2019-03-12</date><risdate>2019</risdate><abstract>A magnetocaloric cascade contains a sequence of magnetocaloric material layers having different Curie temperatures TC, wherein the magnetocaloric material layers include a cold-side outer layer, a hot-side outer layer and at least three inner layers between the cold-side outer layer and the hot-side outer layer, and each pair of next neighboring magnetocaloric layers of the magnetocaloric cascade has a respective Curie-temperature difference amount ΔTC between their respective Curie temperatures, wherein the hot-side outer layer or the cold-side outer layer or both the hot-side and cold-side outer layer exhibits a larger ratio mΔSmax/ΔTC in comparison with any of the inner layers, m denoting the mass of the respective magnetocaloric material layer and ΔSmax denoting a maximum amount of isothermal magnetic entropy change achievable in a magnetic phase transition of the respective magnetocaloric material layer.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10229775B2 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS BLASTING COMBINED HEATING AND REFRIGERATION SYSTEMS ELECTRICITY HEAT PUMP SYSTEMS HEATING INDUCTANCES LIGHTING LIQUEFACTION SOLIDIFICATION OF GASES MAGNETS MANUFACTURE OR STORAGE OF ICE MECHANICAL ENGINEERING REFRIGERATION MACHINES, PLANTS OR SYSTEMS REFRIGERATION OR COOLING SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES TRANSFORMERS WEAPONS |
title | Magnetocaloric cascade and method for fabricating a magnetocaloric cascade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Scharf,%20Florian&rft.date=2019-03-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10229775B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |