Selective distribution of machine-learned models

Machine-learned models are selectively distributed to a plurality of computer servers according to conditions associated with the computer servers. A server receives travel information from a travel coordination system. The travel information describes a plurality of conditions. The server identifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Eric, Zhang, Pusheng, Hermann, Jeremy, Del Balso, Michael, Shariat, Shahriar, Aggarwal, Nikunj, White, Brandon, Campos, Marcos M, Kaur, Shagandeep
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chen, Eric
Zhang, Pusheng
Hermann, Jeremy
Del Balso, Michael
Shariat, Shahriar
Aggarwal, Nikunj
White, Brandon
Campos, Marcos M
Kaur, Shagandeep
description Machine-learned models are selectively distributed to a plurality of computer servers according to conditions associated with the computer servers. A server receives travel information from a travel coordination system. The travel information describes a plurality of conditions. The server identifies a hierarchy of one or more parent-child relationships based on the plurality of conditions. The server trains machine-learned models using the plurality of conditions described by the travel information. The server selects machine-learned models for the plurality of conditions responsive to the identified hierarchy. The server distributes machine-learned models to the plurality of computer servers responsive to the identified hierarchy.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10200457B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10200457B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10200457B23</originalsourceid><addsrcrecordid>eNrjZDAITs1JTS7JLEtVSMksLinKTCotyczPU8hPU8hNTM7IzEvVzUlNLMpLTVHIzU9JzSnmYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBkYGBiam5k5GxsSoAQCHECur</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Selective distribution of machine-learned models</title><source>esp@cenet</source><creator>Chen, Eric ; Zhang, Pusheng ; Hermann, Jeremy ; Del Balso, Michael ; Shariat, Shahriar ; Aggarwal, Nikunj ; White, Brandon ; Campos, Marcos M ; Kaur, Shagandeep</creator><creatorcontrib>Chen, Eric ; Zhang, Pusheng ; Hermann, Jeremy ; Del Balso, Michael ; Shariat, Shahriar ; Aggarwal, Nikunj ; White, Brandon ; Campos, Marcos M ; Kaur, Shagandeep</creatorcontrib><description>Machine-learned models are selectively distributed to a plurality of computer servers according to conditions associated with the computer servers. A server receives travel information from a travel coordination system. The travel information describes a plurality of conditions. The server identifies a hierarchy of one or more parent-child relationships based on the plurality of conditions. The server trains machine-learned models using the plurality of conditions described by the travel information. The server selects machine-learned models for the plurality of conditions responsive to the identified hierarchy. The server distributes machine-learned models to the plurality of computer servers responsive to the identified hierarchy.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190205&amp;DB=EPODOC&amp;CC=US&amp;NR=10200457B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190205&amp;DB=EPODOC&amp;CC=US&amp;NR=10200457B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chen, Eric</creatorcontrib><creatorcontrib>Zhang, Pusheng</creatorcontrib><creatorcontrib>Hermann, Jeremy</creatorcontrib><creatorcontrib>Del Balso, Michael</creatorcontrib><creatorcontrib>Shariat, Shahriar</creatorcontrib><creatorcontrib>Aggarwal, Nikunj</creatorcontrib><creatorcontrib>White, Brandon</creatorcontrib><creatorcontrib>Campos, Marcos M</creatorcontrib><creatorcontrib>Kaur, Shagandeep</creatorcontrib><title>Selective distribution of machine-learned models</title><description>Machine-learned models are selectively distributed to a plurality of computer servers according to conditions associated with the computer servers. A server receives travel information from a travel coordination system. The travel information describes a plurality of conditions. The server identifies a hierarchy of one or more parent-child relationships based on the plurality of conditions. The server trains machine-learned models using the plurality of conditions described by the travel information. The server selects machine-learned models for the plurality of conditions responsive to the identified hierarchy. The server distributes machine-learned models to the plurality of computer servers responsive to the identified hierarchy.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAITs1JTS7JLEtVSMksLinKTCotyczPU8hPU8hNTM7IzEvVzUlNLMpLTVHIzU9JzSnmYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBkYGBiam5k5GxsSoAQCHECur</recordid><startdate>20190205</startdate><enddate>20190205</enddate><creator>Chen, Eric</creator><creator>Zhang, Pusheng</creator><creator>Hermann, Jeremy</creator><creator>Del Balso, Michael</creator><creator>Shariat, Shahriar</creator><creator>Aggarwal, Nikunj</creator><creator>White, Brandon</creator><creator>Campos, Marcos M</creator><creator>Kaur, Shagandeep</creator><scope>EVB</scope></search><sort><creationdate>20190205</creationdate><title>Selective distribution of machine-learned models</title><author>Chen, Eric ; Zhang, Pusheng ; Hermann, Jeremy ; Del Balso, Michael ; Shariat, Shahriar ; Aggarwal, Nikunj ; White, Brandon ; Campos, Marcos M ; Kaur, Shagandeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10200457B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Eric</creatorcontrib><creatorcontrib>Zhang, Pusheng</creatorcontrib><creatorcontrib>Hermann, Jeremy</creatorcontrib><creatorcontrib>Del Balso, Michael</creatorcontrib><creatorcontrib>Shariat, Shahriar</creatorcontrib><creatorcontrib>Aggarwal, Nikunj</creatorcontrib><creatorcontrib>White, Brandon</creatorcontrib><creatorcontrib>Campos, Marcos M</creatorcontrib><creatorcontrib>Kaur, Shagandeep</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Eric</au><au>Zhang, Pusheng</au><au>Hermann, Jeremy</au><au>Del Balso, Michael</au><au>Shariat, Shahriar</au><au>Aggarwal, Nikunj</au><au>White, Brandon</au><au>Campos, Marcos M</au><au>Kaur, Shagandeep</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Selective distribution of machine-learned models</title><date>2019-02-05</date><risdate>2019</risdate><abstract>Machine-learned models are selectively distributed to a plurality of computer servers according to conditions associated with the computer servers. A server receives travel information from a travel coordination system. The travel information describes a plurality of conditions. The server identifies a hierarchy of one or more parent-child relationships based on the plurality of conditions. The server trains machine-learned models using the plurality of conditions described by the travel information. The server selects machine-learned models for the plurality of conditions responsive to the identified hierarchy. The server distributes machine-learned models to the plurality of computer servers responsive to the identified hierarchy.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10200457B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Selective distribution of machine-learned models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chen,%20Eric&rft.date=2019-02-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10200457B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true