Visualizing convolutional neural networks

Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nie, Shaoliang, Leeman-Munk, Samuel Paul, Padia, Kalpesh, Devarajan, Ravinder, Benson, Jordan Riley, Lewis, Lawrence E, Cox, James Allen, Sethi, Saratendu, Healey, Christopher Graham, Caira, David James, Kabul, Mustafa Onur
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Nie, Shaoliang
Leeman-Munk, Samuel Paul
Padia, Kalpesh
Devarajan, Ravinder
Benson, Jordan Riley
Lewis, Lawrence E
Cox, James Allen
Sethi, Saratendu
Healey, Christopher Graham
Caira, David James
Kabul, Mustafa Onur
description Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10192001B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10192001B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10192001B23</originalsourceid><addsrcrecordid>eNrjZNAMyywuTczJrMrMS1dIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZxTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag0PjTY0MDQ0sjAwNDJyJgYNQBo5Smm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Visualizing convolutional neural networks</title><source>esp@cenet</source><creator>Nie, Shaoliang ; Leeman-Munk, Samuel Paul ; Padia, Kalpesh ; Devarajan, Ravinder ; Benson, Jordan Riley ; Lewis, Lawrence E ; Cox, James Allen ; Sethi, Saratendu ; Healey, Christopher Graham ; Caira, David James ; Kabul, Mustafa Onur</creator><creatorcontrib>Nie, Shaoliang ; Leeman-Munk, Samuel Paul ; Padia, Kalpesh ; Devarajan, Ravinder ; Benson, Jordan Riley ; Lewis, Lawrence E ; Cox, James Allen ; Sethi, Saratendu ; Healey, Christopher Graham ; Caira, David James ; Kabul, Mustafa Onur</creatorcontrib><description>Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190129&amp;DB=EPODOC&amp;CC=US&amp;NR=10192001B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190129&amp;DB=EPODOC&amp;CC=US&amp;NR=10192001B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nie, Shaoliang</creatorcontrib><creatorcontrib>Leeman-Munk, Samuel Paul</creatorcontrib><creatorcontrib>Padia, Kalpesh</creatorcontrib><creatorcontrib>Devarajan, Ravinder</creatorcontrib><creatorcontrib>Benson, Jordan Riley</creatorcontrib><creatorcontrib>Lewis, Lawrence E</creatorcontrib><creatorcontrib>Cox, James Allen</creatorcontrib><creatorcontrib>Sethi, Saratendu</creatorcontrib><creatorcontrib>Healey, Christopher Graham</creatorcontrib><creatorcontrib>Caira, David James</creatorcontrib><creatorcontrib>Kabul, Mustafa Onur</creatorcontrib><title>Visualizing convolutional neural networks</title><description>Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAMyywuTczJrMrMS1dIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZxTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag0PjTY0MDQ0sjAwNDJyJgYNQBo5Smm</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Nie, Shaoliang</creator><creator>Leeman-Munk, Samuel Paul</creator><creator>Padia, Kalpesh</creator><creator>Devarajan, Ravinder</creator><creator>Benson, Jordan Riley</creator><creator>Lewis, Lawrence E</creator><creator>Cox, James Allen</creator><creator>Sethi, Saratendu</creator><creator>Healey, Christopher Graham</creator><creator>Caira, David James</creator><creator>Kabul, Mustafa Onur</creator><scope>EVB</scope></search><sort><creationdate>20190129</creationdate><title>Visualizing convolutional neural networks</title><author>Nie, Shaoliang ; Leeman-Munk, Samuel Paul ; Padia, Kalpesh ; Devarajan, Ravinder ; Benson, Jordan Riley ; Lewis, Lawrence E ; Cox, James Allen ; Sethi, Saratendu ; Healey, Christopher Graham ; Caira, David James ; Kabul, Mustafa Onur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10192001B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Shaoliang</creatorcontrib><creatorcontrib>Leeman-Munk, Samuel Paul</creatorcontrib><creatorcontrib>Padia, Kalpesh</creatorcontrib><creatorcontrib>Devarajan, Ravinder</creatorcontrib><creatorcontrib>Benson, Jordan Riley</creatorcontrib><creatorcontrib>Lewis, Lawrence E</creatorcontrib><creatorcontrib>Cox, James Allen</creatorcontrib><creatorcontrib>Sethi, Saratendu</creatorcontrib><creatorcontrib>Healey, Christopher Graham</creatorcontrib><creatorcontrib>Caira, David James</creatorcontrib><creatorcontrib>Kabul, Mustafa Onur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Shaoliang</au><au>Leeman-Munk, Samuel Paul</au><au>Padia, Kalpesh</au><au>Devarajan, Ravinder</au><au>Benson, Jordan Riley</au><au>Lewis, Lawrence E</au><au>Cox, James Allen</au><au>Sethi, Saratendu</au><au>Healey, Christopher Graham</au><au>Caira, David James</au><au>Kabul, Mustafa Onur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Visualizing convolutional neural networks</title><date>2019-01-29</date><risdate>2019</risdate><abstract>Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10192001B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Visualizing convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nie,%20Shaoliang&rft.date=2019-01-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10192001B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true