Visualizing convolutional neural networks
Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also inc...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Nie, Shaoliang Leeman-Munk, Samuel Paul Padia, Kalpesh Devarajan, Ravinder Benson, Jordan Riley Lewis, Lawrence E Cox, James Allen Sethi, Saratendu Healey, Christopher Graham Caira, David James Kabul, Mustafa Onur |
description | Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10192001B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10192001B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10192001B23</originalsourceid><addsrcrecordid>eNrjZNAMyywuTczJrMrMS1dIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZxTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag0PjTY0MDQ0sjAwNDJyJgYNQBo5Smm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Visualizing convolutional neural networks</title><source>esp@cenet</source><creator>Nie, Shaoliang ; Leeman-Munk, Samuel Paul ; Padia, Kalpesh ; Devarajan, Ravinder ; Benson, Jordan Riley ; Lewis, Lawrence E ; Cox, James Allen ; Sethi, Saratendu ; Healey, Christopher Graham ; Caira, David James ; Kabul, Mustafa Onur</creator><creatorcontrib>Nie, Shaoliang ; Leeman-Munk, Samuel Paul ; Padia, Kalpesh ; Devarajan, Ravinder ; Benson, Jordan Riley ; Lewis, Lawrence E ; Cox, James Allen ; Sethi, Saratendu ; Healey, Christopher Graham ; Caira, David James ; Kabul, Mustafa Onur</creatorcontrib><description>Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190129&DB=EPODOC&CC=US&NR=10192001B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190129&DB=EPODOC&CC=US&NR=10192001B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nie, Shaoliang</creatorcontrib><creatorcontrib>Leeman-Munk, Samuel Paul</creatorcontrib><creatorcontrib>Padia, Kalpesh</creatorcontrib><creatorcontrib>Devarajan, Ravinder</creatorcontrib><creatorcontrib>Benson, Jordan Riley</creatorcontrib><creatorcontrib>Lewis, Lawrence E</creatorcontrib><creatorcontrib>Cox, James Allen</creatorcontrib><creatorcontrib>Sethi, Saratendu</creatorcontrib><creatorcontrib>Healey, Christopher Graham</creatorcontrib><creatorcontrib>Caira, David James</creatorcontrib><creatorcontrib>Kabul, Mustafa Onur</creatorcontrib><title>Visualizing convolutional neural networks</title><description>Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAMyywuTczJrMrMS1dIzs8ry88pLcnMz0vMUchLLS0CUyXl-UXZxTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag0PjTY0MDQ0sjAwNDJyJgYNQBo5Smm</recordid><startdate>20190129</startdate><enddate>20190129</enddate><creator>Nie, Shaoliang</creator><creator>Leeman-Munk, Samuel Paul</creator><creator>Padia, Kalpesh</creator><creator>Devarajan, Ravinder</creator><creator>Benson, Jordan Riley</creator><creator>Lewis, Lawrence E</creator><creator>Cox, James Allen</creator><creator>Sethi, Saratendu</creator><creator>Healey, Christopher Graham</creator><creator>Caira, David James</creator><creator>Kabul, Mustafa Onur</creator><scope>EVB</scope></search><sort><creationdate>20190129</creationdate><title>Visualizing convolutional neural networks</title><author>Nie, Shaoliang ; Leeman-Munk, Samuel Paul ; Padia, Kalpesh ; Devarajan, Ravinder ; Benson, Jordan Riley ; Lewis, Lawrence E ; Cox, James Allen ; Sethi, Saratendu ; Healey, Christopher Graham ; Caira, David James ; Kabul, Mustafa Onur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10192001B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Shaoliang</creatorcontrib><creatorcontrib>Leeman-Munk, Samuel Paul</creatorcontrib><creatorcontrib>Padia, Kalpesh</creatorcontrib><creatorcontrib>Devarajan, Ravinder</creatorcontrib><creatorcontrib>Benson, Jordan Riley</creatorcontrib><creatorcontrib>Lewis, Lawrence E</creatorcontrib><creatorcontrib>Cox, James Allen</creatorcontrib><creatorcontrib>Sethi, Saratendu</creatorcontrib><creatorcontrib>Healey, Christopher Graham</creatorcontrib><creatorcontrib>Caira, David James</creatorcontrib><creatorcontrib>Kabul, Mustafa Onur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nie, Shaoliang</au><au>Leeman-Munk, Samuel Paul</au><au>Padia, Kalpesh</au><au>Devarajan, Ravinder</au><au>Benson, Jordan Riley</au><au>Lewis, Lawrence E</au><au>Cox, James Allen</au><au>Sethi, Saratendu</au><au>Healey, Christopher Graham</au><au>Caira, David James</au><au>Kabul, Mustafa Onur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Visualizing convolutional neural networks</title><date>2019-01-29</date><risdate>2019</risdate><abstract>Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10192001B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Visualizing convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nie,%20Shaoliang&rft.date=2019-01-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10192001B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |