Visual segmentation of lawn grass
Disclosed is a method for identifying lawn grass which includes capturing an image of the terrain in front of a mower, segmenting the image into neighborhoods, calculating at least two image statistics for each of the neighborhoods, generating a binary representation of each image statistic. The bin...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Snow, Henry H Beno, Jonathan Branicky, Michael S Hudson, Richard E Schepelmann, Alexander Rolin, Amaury D Quinn, Roger D Merat, Francis L Green, James M Hughes, Bradley E Daltorio, Kathryn A |
description | Disclosed is a method for identifying lawn grass which includes capturing an image of the terrain in front of a mower, segmenting the image into neighborhoods, calculating at least two image statistics for each of the neighborhoods, generating a binary representation of each image statistic. The binary representation of each image statistic is generated by comparing the calculated image statistic values to predetermined image statistic values for grass. The method further includes weighting each of the binary representations of each image statistic, and summing corresponding neighborhoods for all image statistics. A binary threshold is applied to each of the summed neighborhoods to generate a binary map representing grass containing areas and non-grass containing areas. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10157334B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10157334B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10157334B23</originalsourceid><addsrcrecordid>eNrjZFAMyywuTcxRKE5Nz03NK0ksyczPU8hPU8hJLM9TSC9KLC7mYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBoam5sbGJk5GxsSoAQCPEiXV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Visual segmentation of lawn grass</title><source>esp@cenet</source><creator>Snow, Henry H ; Beno, Jonathan ; Branicky, Michael S ; Hudson, Richard E ; Schepelmann, Alexander ; Rolin, Amaury D ; Quinn, Roger D ; Merat, Francis L ; Green, James M ; Hughes, Bradley E ; Daltorio, Kathryn A</creator><creatorcontrib>Snow, Henry H ; Beno, Jonathan ; Branicky, Michael S ; Hudson, Richard E ; Schepelmann, Alexander ; Rolin, Amaury D ; Quinn, Roger D ; Merat, Francis L ; Green, James M ; Hughes, Bradley E ; Daltorio, Kathryn A</creatorcontrib><description>Disclosed is a method for identifying lawn grass which includes capturing an image of the terrain in front of a mower, segmenting the image into neighborhoods, calculating at least two image statistics for each of the neighborhoods, generating a binary representation of each image statistic. The binary representation of each image statistic is generated by comparing the calculated image statistic values to predetermined image statistic values for grass. The method further includes weighting each of the binary representations of each image statistic, and summing corresponding neighborhoods for all image statistics. A binary threshold is applied to each of the summed neighborhoods to generate a binary map representing grass containing areas and non-grass containing areas.</description><language>eng</language><subject>AGRICULTURE ; ANIMAL HUSBANDRY ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; FISHING ; FORESTRY ; HARVESTING ; HUMAN NECESSITIES ; HUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MOWING ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION ; TRAPPING</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20181218&DB=EPODOC&CC=US&NR=10157334B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20181218&DB=EPODOC&CC=US&NR=10157334B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Snow, Henry H</creatorcontrib><creatorcontrib>Beno, Jonathan</creatorcontrib><creatorcontrib>Branicky, Michael S</creatorcontrib><creatorcontrib>Hudson, Richard E</creatorcontrib><creatorcontrib>Schepelmann, Alexander</creatorcontrib><creatorcontrib>Rolin, Amaury D</creatorcontrib><creatorcontrib>Quinn, Roger D</creatorcontrib><creatorcontrib>Merat, Francis L</creatorcontrib><creatorcontrib>Green, James M</creatorcontrib><creatorcontrib>Hughes, Bradley E</creatorcontrib><creatorcontrib>Daltorio, Kathryn A</creatorcontrib><title>Visual segmentation of lawn grass</title><description>Disclosed is a method for identifying lawn grass which includes capturing an image of the terrain in front of a mower, segmenting the image into neighborhoods, calculating at least two image statistics for each of the neighborhoods, generating a binary representation of each image statistic. The binary representation of each image statistic is generated by comparing the calculated image statistic values to predetermined image statistic values for grass. The method further includes weighting each of the binary representations of each image statistic, and summing corresponding neighborhoods for all image statistics. A binary threshold is applied to each of the summed neighborhoods to generate a binary map representing grass containing areas and non-grass containing areas.</description><subject>AGRICULTURE</subject><subject>ANIMAL HUSBANDRY</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>FISHING</subject><subject>FORESTRY</subject><subject>HARVESTING</subject><subject>HUMAN NECESSITIES</subject><subject>HUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MOWING</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><subject>TRAPPING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAMyywuTcxRKE5Nz03NK0ksyczPU8hPU8hJLM9TSC9KLC7mYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGBoam5sbGJk5GxsSoAQCPEiXV</recordid><startdate>20181218</startdate><enddate>20181218</enddate><creator>Snow, Henry H</creator><creator>Beno, Jonathan</creator><creator>Branicky, Michael S</creator><creator>Hudson, Richard E</creator><creator>Schepelmann, Alexander</creator><creator>Rolin, Amaury D</creator><creator>Quinn, Roger D</creator><creator>Merat, Francis L</creator><creator>Green, James M</creator><creator>Hughes, Bradley E</creator><creator>Daltorio, Kathryn A</creator><scope>EVB</scope></search><sort><creationdate>20181218</creationdate><title>Visual segmentation of lawn grass</title><author>Snow, Henry H ; Beno, Jonathan ; Branicky, Michael S ; Hudson, Richard E ; Schepelmann, Alexander ; Rolin, Amaury D ; Quinn, Roger D ; Merat, Francis L ; Green, James M ; Hughes, Bradley E ; Daltorio, Kathryn A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10157334B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AGRICULTURE</topic><topic>ANIMAL HUSBANDRY</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>FISHING</topic><topic>FORESTRY</topic><topic>HARVESTING</topic><topic>HUMAN NECESSITIES</topic><topic>HUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MOWING</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><topic>TRAPPING</topic><toplevel>online_resources</toplevel><creatorcontrib>Snow, Henry H</creatorcontrib><creatorcontrib>Beno, Jonathan</creatorcontrib><creatorcontrib>Branicky, Michael S</creatorcontrib><creatorcontrib>Hudson, Richard E</creatorcontrib><creatorcontrib>Schepelmann, Alexander</creatorcontrib><creatorcontrib>Rolin, Amaury D</creatorcontrib><creatorcontrib>Quinn, Roger D</creatorcontrib><creatorcontrib>Merat, Francis L</creatorcontrib><creatorcontrib>Green, James M</creatorcontrib><creatorcontrib>Hughes, Bradley E</creatorcontrib><creatorcontrib>Daltorio, Kathryn A</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Snow, Henry H</au><au>Beno, Jonathan</au><au>Branicky, Michael S</au><au>Hudson, Richard E</au><au>Schepelmann, Alexander</au><au>Rolin, Amaury D</au><au>Quinn, Roger D</au><au>Merat, Francis L</au><au>Green, James M</au><au>Hughes, Bradley E</au><au>Daltorio, Kathryn A</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Visual segmentation of lawn grass</title><date>2018-12-18</date><risdate>2018</risdate><abstract>Disclosed is a method for identifying lawn grass which includes capturing an image of the terrain in front of a mower, segmenting the image into neighborhoods, calculating at least two image statistics for each of the neighborhoods, generating a binary representation of each image statistic. The binary representation of each image statistic is generated by comparing the calculated image statistic values to predetermined image statistic values for grass. The method further includes weighting each of the binary representations of each image statistic, and summing corresponding neighborhoods for all image statistics. A binary threshold is applied to each of the summed neighborhoods to generate a binary map representing grass containing areas and non-grass containing areas.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10157334B2 |
source | esp@cenet |
subjects | AGRICULTURE ANIMAL HUSBANDRY CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY FISHING FORESTRY HARVESTING HUMAN NECESSITIES HUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL MOWING PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION TRAPPING |
title | Visual segmentation of lawn grass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Snow,%20Henry%20H&rft.date=2018-12-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10157334B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |