Executing parallel jobs with message passing on compute clusters

A client may submit a job to a service provider that processes a large data set and that employs a message passing interface (MPI) to coordinate the collective execution of the job on multiple compute nodes. The framework may create a MapReduce cluster (e.g., within a VPC) and may generate a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baji, Saurabh Dileep, Joseph, Rejith George, Lee, Tin-Yu, Sirota, Peter, Le Grand, Scott Michael
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Baji, Saurabh Dileep
Joseph, Rejith George
Lee, Tin-Yu
Sirota, Peter
Le Grand, Scott Michael
description A client may submit a job to a service provider that processes a large data set and that employs a message passing interface (MPI) to coordinate the collective execution of the job on multiple compute nodes. The framework may create a MapReduce cluster (e.g., within a VPC) and may generate a single key pair for the cluster, which may be downloaded by nodes in the cluster and used to establish secure node-to-node communication channels for MPI messaging. A single node may be assigned as a mapper process and may launch the MPI job, which may fork its commands to other nodes in the cluster (e.g., nodes identified in a hostfile associated with the MPI job), according to the MPI interface. A rankfile may be used to synchronize the MPI job and another MPI process used to download portions of the data set to respective nodes in the cluster.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10148736B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10148736B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10148736B13</originalsourceid><addsrcrecordid>eNrjZHBwrUhNLi3JzEtXKEgsSszJSc1RyMpPKlYozyzJUMhNLS5OTE8FShUXg5Tk5ykk5-cWlJakKiTnlBaXpBYV8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQwNDEwtzYzMnQ2Ni1AAA_Xsx4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Executing parallel jobs with message passing on compute clusters</title><source>esp@cenet</source><creator>Baji, Saurabh Dileep ; Joseph, Rejith George ; Lee, Tin-Yu ; Sirota, Peter ; Le Grand, Scott Michael</creator><creatorcontrib>Baji, Saurabh Dileep ; Joseph, Rejith George ; Lee, Tin-Yu ; Sirota, Peter ; Le Grand, Scott Michael</creatorcontrib><description>A client may submit a job to a service provider that processes a large data set and that employs a message passing interface (MPI) to coordinate the collective execution of the job on multiple compute nodes. The framework may create a MapReduce cluster (e.g., within a VPC) and may generate a single key pair for the cluster, which may be downloaded by nodes in the cluster and used to establish secure node-to-node communication channels for MPI messaging. A single node may be assigned as a mapper process and may launch the MPI job, which may fork its commands to other nodes in the cluster (e.g., nodes identified in a hostfile associated with the MPI job), according to the MPI interface. A rankfile may be used to synchronize the MPI job and another MPI process used to download portions of the data set to respective nodes in the cluster.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181204&amp;DB=EPODOC&amp;CC=US&amp;NR=10148736B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181204&amp;DB=EPODOC&amp;CC=US&amp;NR=10148736B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Baji, Saurabh Dileep</creatorcontrib><creatorcontrib>Joseph, Rejith George</creatorcontrib><creatorcontrib>Lee, Tin-Yu</creatorcontrib><creatorcontrib>Sirota, Peter</creatorcontrib><creatorcontrib>Le Grand, Scott Michael</creatorcontrib><title>Executing parallel jobs with message passing on compute clusters</title><description>A client may submit a job to a service provider that processes a large data set and that employs a message passing interface (MPI) to coordinate the collective execution of the job on multiple compute nodes. The framework may create a MapReduce cluster (e.g., within a VPC) and may generate a single key pair for the cluster, which may be downloaded by nodes in the cluster and used to establish secure node-to-node communication channels for MPI messaging. A single node may be assigned as a mapper process and may launch the MPI job, which may fork its commands to other nodes in the cluster (e.g., nodes identified in a hostfile associated with the MPI job), according to the MPI interface. A rankfile may be used to synchronize the MPI job and another MPI process used to download portions of the data set to respective nodes in the cluster.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBwrUhNLi3JzEtXKEgsSszJSc1RyMpPKlYozyzJUMhNLS5OTE8FShUXg5Tk5ykk5-cWlJakKiTnlBaXpBYV8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQwNDEwtzYzMnQ2Ni1AAA_Xsx4Q</recordid><startdate>20181204</startdate><enddate>20181204</enddate><creator>Baji, Saurabh Dileep</creator><creator>Joseph, Rejith George</creator><creator>Lee, Tin-Yu</creator><creator>Sirota, Peter</creator><creator>Le Grand, Scott Michael</creator><scope>EVB</scope></search><sort><creationdate>20181204</creationdate><title>Executing parallel jobs with message passing on compute clusters</title><author>Baji, Saurabh Dileep ; Joseph, Rejith George ; Lee, Tin-Yu ; Sirota, Peter ; Le Grand, Scott Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10148736B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Baji, Saurabh Dileep</creatorcontrib><creatorcontrib>Joseph, Rejith George</creatorcontrib><creatorcontrib>Lee, Tin-Yu</creatorcontrib><creatorcontrib>Sirota, Peter</creatorcontrib><creatorcontrib>Le Grand, Scott Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baji, Saurabh Dileep</au><au>Joseph, Rejith George</au><au>Lee, Tin-Yu</au><au>Sirota, Peter</au><au>Le Grand, Scott Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Executing parallel jobs with message passing on compute clusters</title><date>2018-12-04</date><risdate>2018</risdate><abstract>A client may submit a job to a service provider that processes a large data set and that employs a message passing interface (MPI) to coordinate the collective execution of the job on multiple compute nodes. The framework may create a MapReduce cluster (e.g., within a VPC) and may generate a single key pair for the cluster, which may be downloaded by nodes in the cluster and used to establish secure node-to-node communication channels for MPI messaging. A single node may be assigned as a mapper process and may launch the MPI job, which may fork its commands to other nodes in the cluster (e.g., nodes identified in a hostfile associated with the MPI job), according to the MPI interface. A rankfile may be used to synchronize the MPI job and another MPI process used to download portions of the data set to respective nodes in the cluster.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10148736B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Executing parallel jobs with message passing on compute clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Baji,%20Saurabh%20Dileep&rft.date=2018-12-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10148736B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true