Endoscopic image diagnosis support system for computing average values of identification probabilities of pathological types
An endoscopic image diagnosis support system (100) includes: a memory (10) that stores learning images pre-classified into pathological types; and a processor (20) that, given an endoscopic image, performs feature value matching between an image of an identification target region in the endoscopic i...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mishima, Tsubasa Yoshida, Shigeto Koide, Tetsushi Tuan, HoangAnh Sugi, Kouki Miyaki, Rie Hirakawa, Tsubasa Shigemi, Satoshi Tamaki, Toru |
description | An endoscopic image diagnosis support system (100) includes: a memory (10) that stores learning images pre-classified into pathological types; and a processor (20) that, given an endoscopic image, performs feature value matching between an image of an identification target region in the endoscopic image and the learning images, to identify the pathological types in the identification target region. The processor (20) performs feature value matching between images of the identification target region and subdivided regions of the identification target region and the learning images to compute identification probabilities of the pathological types in the identification target region and the subdivided regions, and computes average values of the identification probabilities of the pathological types in the identification target region and the subdivided regions, the average values corresponding to identification probabilities of the pathological types in hierarchical overlap regions of the identification target region and the subdivided regions. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10062161B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10062161B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10062161B23</originalsourceid><addsrcrecordid>eNqNykEKwkAMQNFuXIh6h3gAoa3gAZSKe3UtcZrWwHQSmrRQ8PAqegBXf_HfPHtWqRYLohyAO2wJasY2ibGBDarSO9hkTh000kOQTgfn1AKO1H_4iHEgA2mAa0rODQd0lgTayx3vHNn5-xX9IVHaN4jgk5Its1mD0Wj16yJbH6vL4bQhlRuZYqBEfrueizzflcWu2Jfbf8wL0ZZJVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Endoscopic image diagnosis support system for computing average values of identification probabilities of pathological types</title><source>esp@cenet</source><creator>Mishima, Tsubasa ; Yoshida, Shigeto ; Koide, Tetsushi ; Tuan, HoangAnh ; Sugi, Kouki ; Miyaki, Rie ; Hirakawa, Tsubasa ; Shigemi, Satoshi ; Tamaki, Toru</creator><creatorcontrib>Mishima, Tsubasa ; Yoshida, Shigeto ; Koide, Tetsushi ; Tuan, HoangAnh ; Sugi, Kouki ; Miyaki, Rie ; Hirakawa, Tsubasa ; Shigemi, Satoshi ; Tamaki, Toru</creatorcontrib><description>An endoscopic image diagnosis support system (100) includes: a memory (10) that stores learning images pre-classified into pathological types; and a processor (20) that, given an endoscopic image, performs feature value matching between an image of an identification target region in the endoscopic image and the learning images, to identify the pathological types in the identification target region. The processor (20) performs feature value matching between images of the identification target region and subdivided regions of the identification target region and the learning images to compute identification probabilities of the pathological types in the identification target region and the subdivided regions, and computes average values of the identification probabilities of the pathological types in the identification target region and the subdivided regions, the average values corresponding to identification probabilities of the pathological types in hierarchical overlap regions of the identification target region and the subdivided regions.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180828&DB=EPODOC&CC=US&NR=10062161B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180828&DB=EPODOC&CC=US&NR=10062161B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mishima, Tsubasa</creatorcontrib><creatorcontrib>Yoshida, Shigeto</creatorcontrib><creatorcontrib>Koide, Tetsushi</creatorcontrib><creatorcontrib>Tuan, HoangAnh</creatorcontrib><creatorcontrib>Sugi, Kouki</creatorcontrib><creatorcontrib>Miyaki, Rie</creatorcontrib><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Shigemi, Satoshi</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><title>Endoscopic image diagnosis support system for computing average values of identification probabilities of pathological types</title><description>An endoscopic image diagnosis support system (100) includes: a memory (10) that stores learning images pre-classified into pathological types; and a processor (20) that, given an endoscopic image, performs feature value matching between an image of an identification target region in the endoscopic image and the learning images, to identify the pathological types in the identification target region. The processor (20) performs feature value matching between images of the identification target region and subdivided regions of the identification target region and the learning images to compute identification probabilities of the pathological types in the identification target region and the subdivided regions, and computes average values of the identification probabilities of the pathological types in the identification target region and the subdivided regions, the average values corresponding to identification probabilities of the pathological types in hierarchical overlap regions of the identification target region and the subdivided regions.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwkAMQNFuXIh6h3gAoa3gAZSKe3UtcZrWwHQSmrRQ8PAqegBXf_HfPHtWqRYLohyAO2wJasY2ibGBDarSO9hkTh000kOQTgfn1AKO1H_4iHEgA2mAa0rODQd0lgTayx3vHNn5-xX9IVHaN4jgk5Its1mD0Wj16yJbH6vL4bQhlRuZYqBEfrueizzflcWu2Jfbf8wL0ZZJVw</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Mishima, Tsubasa</creator><creator>Yoshida, Shigeto</creator><creator>Koide, Tetsushi</creator><creator>Tuan, HoangAnh</creator><creator>Sugi, Kouki</creator><creator>Miyaki, Rie</creator><creator>Hirakawa, Tsubasa</creator><creator>Shigemi, Satoshi</creator><creator>Tamaki, Toru</creator><scope>EVB</scope></search><sort><creationdate>20180828</creationdate><title>Endoscopic image diagnosis support system for computing average values of identification probabilities of pathological types</title><author>Mishima, Tsubasa ; Yoshida, Shigeto ; Koide, Tetsushi ; Tuan, HoangAnh ; Sugi, Kouki ; Miyaki, Rie ; Hirakawa, Tsubasa ; Shigemi, Satoshi ; Tamaki, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10062161B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Mishima, Tsubasa</creatorcontrib><creatorcontrib>Yoshida, Shigeto</creatorcontrib><creatorcontrib>Koide, Tetsushi</creatorcontrib><creatorcontrib>Tuan, HoangAnh</creatorcontrib><creatorcontrib>Sugi, Kouki</creatorcontrib><creatorcontrib>Miyaki, Rie</creatorcontrib><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Shigemi, Satoshi</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishima, Tsubasa</au><au>Yoshida, Shigeto</au><au>Koide, Tetsushi</au><au>Tuan, HoangAnh</au><au>Sugi, Kouki</au><au>Miyaki, Rie</au><au>Hirakawa, Tsubasa</au><au>Shigemi, Satoshi</au><au>Tamaki, Toru</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Endoscopic image diagnosis support system for computing average values of identification probabilities of pathological types</title><date>2018-08-28</date><risdate>2018</risdate><abstract>An endoscopic image diagnosis support system (100) includes: a memory (10) that stores learning images pre-classified into pathological types; and a processor (20) that, given an endoscopic image, performs feature value matching between an image of an identification target region in the endoscopic image and the learning images, to identify the pathological types in the identification target region. The processor (20) performs feature value matching between images of the identification target region and subdivided regions of the identification target region and the learning images to compute identification probabilities of the pathological types in the identification target region and the subdivided regions, and computes average values of the identification probabilities of the pathological types in the identification target region and the subdivided regions, the average values corresponding to identification probabilities of the pathological types in hierarchical overlap regions of the identification target region and the subdivided regions.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US10062161B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Endoscopic image diagnosis support system for computing average values of identification probabilities of pathological types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A20%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mishima,%20Tsubasa&rft.date=2018-08-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10062161B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |