Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery

Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary bat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ryoshi, Kazuomi, Osako, Toshiyuki, Toya, Hiroyuki
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ryoshi, Kazuomi
Osako, Toshiyuki
Toya, Hiroyuki
description Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10044025B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10044025B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10044025B23</originalsourceid><addsrcrecordid>eNqVzTFuwkAQBVA3FChwh6EPkmPgAiAiKhpIbU12v_GK9Y6zO0b4ypwCW-IApPr60pv50-xxdOYKTw2HCwckkJGmleQUVPc2yt1ZUMtRnfFIxMGOtqvYaBdduFADrcWS1oiQ6pMMjx00AHfDgBXRsadKIjEFCUv-6yBdIngYjeL7YSvBSLAce_plHS76N5ZG8Y-Ps2xSsU-Yv_IjW3zvz7vDEq2USC0bBGj5c_rK8_U6LzbbYvWOeQLmQHLp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery</title><source>esp@cenet</source><creator>Ryoshi, Kazuomi ; Osako, Toshiyuki ; Toya, Hiroyuki</creator><creatorcontrib>Ryoshi, Kazuomi ; Osako, Toshiyuki ; Toya, Hiroyuki</creatorcontrib><description>Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMISTRY ; COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSESC01D OR C01F ; ELECTRICITY ; INORGANIC CHEMISTRY ; METALLURGY ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180807&amp;DB=EPODOC&amp;CC=US&amp;NR=10044025B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180807&amp;DB=EPODOC&amp;CC=US&amp;NR=10044025B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ryoshi, Kazuomi</creatorcontrib><creatorcontrib>Osako, Toshiyuki</creatorcontrib><creatorcontrib>Toya, Hiroyuki</creatorcontrib><title>Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery</title><description>Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMISTRY</subject><subject>COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSESC01D OR C01F</subject><subject>ELECTRICITY</subject><subject>INORGANIC CHEMISTRY</subject><subject>METALLURGY</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqVzTFuwkAQBVA3FChwh6EPkmPgAiAiKhpIbU12v_GK9Y6zO0b4ypwCW-IApPr60pv50-xxdOYKTw2HCwckkJGmleQUVPc2yt1ZUMtRnfFIxMGOtqvYaBdduFADrcWS1oiQ6pMMjx00AHfDgBXRsadKIjEFCUv-6yBdIngYjeL7YSvBSLAce_plHS76N5ZG8Y-Ps2xSsU-Yv_IjW3zvz7vDEq2USC0bBGj5c_rK8_U6LzbbYvWOeQLmQHLp</recordid><startdate>20180807</startdate><enddate>20180807</enddate><creator>Ryoshi, Kazuomi</creator><creator>Osako, Toshiyuki</creator><creator>Toya, Hiroyuki</creator><scope>EVB</scope></search><sort><creationdate>20180807</creationdate><title>Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery</title><author>Ryoshi, Kazuomi ; Osako, Toshiyuki ; Toya, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10044025B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMISTRY</topic><topic>COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSESC01D OR C01F</topic><topic>ELECTRICITY</topic><topic>INORGANIC CHEMISTRY</topic><topic>METALLURGY</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>Ryoshi, Kazuomi</creatorcontrib><creatorcontrib>Osako, Toshiyuki</creatorcontrib><creatorcontrib>Toya, Hiroyuki</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryoshi, Kazuomi</au><au>Osako, Toshiyuki</au><au>Toya, Hiroyuki</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery</title><date>2018-08-07</date><risdate>2018</risdate><abstract>Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10044025B2
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMISTRY
COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSESC01D OR C01F
ELECTRICITY
INORGANIC CHEMISTRY
METALLURGY
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY
title Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ryoshi,%20Kazuomi&rft.date=2018-08-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10044025B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true