Method for determining a stochastic metric relating to a lithographic process

A method of determining a stochastic metric, the method including: obtaining a trained model having been trained to correlate training optical metrology data to training stochastic metric data, wherein the training optical metrology data includes a plurality of measurement signals relating to distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BATISTAKIS, CHRYSOSTOMOS, RUTIGLIANI, VITO DANIELE, PISARENCO, MAXIM, VERSCHUREN, COEN ADRIANUS, VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA, GEYPEN, NIELS, MIDDLEBROOKS, SCOTT ANDERSON
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BATISTAKIS, CHRYSOSTOMOS
RUTIGLIANI, VITO DANIELE
PISARENCO, MAXIM
VERSCHUREN, COEN ADRIANUS
VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA
GEYPEN, NIELS
MIDDLEBROOKS, SCOTT ANDERSON
description A method of determining a stochastic metric, the method including: obtaining a trained model having been trained to correlate training optical metrology data to training stochastic metric data, wherein the training optical metrology data includes a plurality of measurement signals relating to distributions of an intensity related parameter across a zero or higher order of diffraction of radiation scattered from a plurality of training structures, and the training stochastic metric data includes stochastic metric values relating to the plurality of training structures, wherein the plurality of training structures have been formed with a variation in one or more dimensions on which the stochastic metric is dependent; obtaining optical metrology data including a distribution of the intensity related parameter across a zero or higher order of diffraction of radiation scattered from a structure; and using the trained model to infer a value of the stochastic metric from the optical metrology data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TWI815419BB</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TWI815419BB</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TWI815419BB3</originalsourceid><addsrcrecordid>eNrjZPD1TS3JyE9RSMsvUkhJLUktys3My8xLV0hUKC7JT85ILC7JTFbITS0pAlJFqTmJJSDJknygfE4mUGN6UWJBBlCqoCg_ObW4mIeBNS0xpziVF0pzMyi4uYY4e-imFuTHpxYXJCan5qWWxIeEe1oYmpoYWjo5GROhBACSAzaF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for determining a stochastic metric relating to a lithographic process</title><source>esp@cenet</source><creator>BATISTAKIS, CHRYSOSTOMOS ; RUTIGLIANI, VITO DANIELE ; PISARENCO, MAXIM ; VERSCHUREN, COEN ADRIANUS ; VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA ; GEYPEN, NIELS ; MIDDLEBROOKS, SCOTT ANDERSON</creator><creatorcontrib>BATISTAKIS, CHRYSOSTOMOS ; RUTIGLIANI, VITO DANIELE ; PISARENCO, MAXIM ; VERSCHUREN, COEN ADRIANUS ; VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA ; GEYPEN, NIELS ; MIDDLEBROOKS, SCOTT ANDERSON</creatorcontrib><description>A method of determining a stochastic metric, the method including: obtaining a trained model having been trained to correlate training optical metrology data to training stochastic metric data, wherein the training optical metrology data includes a plurality of measurement signals relating to distributions of an intensity related parameter across a zero or higher order of diffraction of radiation scattered from a plurality of training structures, and the training stochastic metric data includes stochastic metric values relating to the plurality of training structures, wherein the plurality of training structures have been formed with a variation in one or more dimensions on which the stochastic metric is dependent; obtaining optical metrology data including a distribution of the intensity related parameter across a zero or higher order of diffraction of radiation scattered from a structure; and using the trained model to infer a value of the stochastic metric from the optical metrology data.</description><language>chi ; eng</language><subject>CALCULATING ; COLORIMETRY ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT ; MEASURING ; PHYSICS ; RADIATION PYROMETRY ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230911&amp;DB=EPODOC&amp;CC=TW&amp;NR=I815419B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230911&amp;DB=EPODOC&amp;CC=TW&amp;NR=I815419B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BATISTAKIS, CHRYSOSTOMOS</creatorcontrib><creatorcontrib>RUTIGLIANI, VITO DANIELE</creatorcontrib><creatorcontrib>PISARENCO, MAXIM</creatorcontrib><creatorcontrib>VERSCHUREN, COEN ADRIANUS</creatorcontrib><creatorcontrib>VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA</creatorcontrib><creatorcontrib>GEYPEN, NIELS</creatorcontrib><creatorcontrib>MIDDLEBROOKS, SCOTT ANDERSON</creatorcontrib><title>Method for determining a stochastic metric relating to a lithographic process</title><description>A method of determining a stochastic metric, the method including: obtaining a trained model having been trained to correlate training optical metrology data to training stochastic metric data, wherein the training optical metrology data includes a plurality of measurement signals relating to distributions of an intensity related parameter across a zero or higher order of diffraction of radiation scattered from a plurality of training structures, and the training stochastic metric data includes stochastic metric values relating to the plurality of training structures, wherein the plurality of training structures have been formed with a variation in one or more dimensions on which the stochastic metric is dependent; obtaining optical metrology data including a distribution of the intensity related parameter across a zero or higher order of diffraction of radiation scattered from a structure; and using the trained model to infer a value of the stochastic metric from the optical metrology data.</description><subject>CALCULATING</subject><subject>COLORIMETRY</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIATION PYROMETRY</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD1TS3JyE9RSMsvUkhJLUktys3My8xLV0hUKC7JT85ILC7JTFbITS0pAlJFqTmJJSDJknygfE4mUGN6UWJBBlCqoCg_ObW4mIeBNS0xpziVF0pzMyi4uYY4e-imFuTHpxYXJCan5qWWxIeEe1oYmpoYWjo5GROhBACSAzaF</recordid><startdate>20230911</startdate><enddate>20230911</enddate><creator>BATISTAKIS, CHRYSOSTOMOS</creator><creator>RUTIGLIANI, VITO DANIELE</creator><creator>PISARENCO, MAXIM</creator><creator>VERSCHUREN, COEN ADRIANUS</creator><creator>VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA</creator><creator>GEYPEN, NIELS</creator><creator>MIDDLEBROOKS, SCOTT ANDERSON</creator><scope>EVB</scope></search><sort><creationdate>20230911</creationdate><title>Method for determining a stochastic metric relating to a lithographic process</title><author>BATISTAKIS, CHRYSOSTOMOS ; RUTIGLIANI, VITO DANIELE ; PISARENCO, MAXIM ; VERSCHUREN, COEN ADRIANUS ; VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA ; GEYPEN, NIELS ; MIDDLEBROOKS, SCOTT ANDERSON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TWI815419BB3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COLORIMETRY</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIATION PYROMETRY</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>BATISTAKIS, CHRYSOSTOMOS</creatorcontrib><creatorcontrib>RUTIGLIANI, VITO DANIELE</creatorcontrib><creatorcontrib>PISARENCO, MAXIM</creatorcontrib><creatorcontrib>VERSCHUREN, COEN ADRIANUS</creatorcontrib><creatorcontrib>VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA</creatorcontrib><creatorcontrib>GEYPEN, NIELS</creatorcontrib><creatorcontrib>MIDDLEBROOKS, SCOTT ANDERSON</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BATISTAKIS, CHRYSOSTOMOS</au><au>RUTIGLIANI, VITO DANIELE</au><au>PISARENCO, MAXIM</au><au>VERSCHUREN, COEN ADRIANUS</au><au>VAN KRAAIJ, MARKUS GERARDUS MARTINUS MARIA</au><au>GEYPEN, NIELS</au><au>MIDDLEBROOKS, SCOTT ANDERSON</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for determining a stochastic metric relating to a lithographic process</title><date>2023-09-11</date><risdate>2023</risdate><abstract>A method of determining a stochastic metric, the method including: obtaining a trained model having been trained to correlate training optical metrology data to training stochastic metric data, wherein the training optical metrology data includes a plurality of measurement signals relating to distributions of an intensity related parameter across a zero or higher order of diffraction of radiation scattered from a plurality of training structures, and the training stochastic metric data includes stochastic metric values relating to the plurality of training structures, wherein the plurality of training structures have been formed with a variation in one or more dimensions on which the stochastic metric is dependent; obtaining optical metrology data including a distribution of the intensity related parameter across a zero or higher order of diffraction of radiation scattered from a structure; and using the trained model to infer a value of the stochastic metric from the optical metrology data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_TWI815419BB
source esp@cenet
subjects CALCULATING
COLORIMETRY
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT
MEASURING
PHYSICS
RADIATION PYROMETRY
TESTING
title Method for determining a stochastic metric relating to a lithographic process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BATISTAKIS,%20CHRYSOSTOMOS&rft.date=2023-09-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETWI815419BB%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true