TWI783748B

This invention discloses a method and a system of image recognition for an obstacle avoidance flight control for an unmanned aerial vehicle (UAV) by applying the deep learning and applications thereof. The system includes a UAV, a wireless communication unit and an information processing unit. The U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUANG, WEI-HUA, LU, QI-YAN, LEE, ZONG YAN, CHEN, JIAN-RONG, LIN, KUNNG, ZHOU, QIAN-YU, ZHONG, XIANG-AN, CHEN, SI-HUA, LIU, ZHAO-XIANG, LEE, KUN YI, MIAO, YEN HAO
Format: Patent
Sprache:chi
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUANG, WEI-HUA
LU, QI-YAN
LEE, ZONG YAN
CHEN, JIAN-RONG
LIN, KUNNG
ZHOU, QIAN-YU
ZHONG, XIANG-AN
CHEN, SI-HUA
LIU, ZHAO-XIANG
LEE, KUN YI
MIAO, YEN HAO
description This invention discloses a method and a system of image recognition for an obstacle avoidance flight control for an unmanned aerial vehicle (UAV) by applying the deep learning and applications thereof. The system includes a UAV, a wireless communication unit and an information processing unit. The UAV includes a flight control module and an image capturing device. The flight control module controls the flight of the UAV according to a flight path. The image capturing device continuously captures flight status of the UAV and images it as a flight image. The information processing unit receives the flight image through the wireless communication unit. The information processing unit contains a deep learning algorithm module and a feature database with an object feature sample built in. Each object feature sample is defined with an object name. The deep learning algorithm module is configured to extract the object feature for each flight image and input it into the feature database to predict a probability of ma
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TWI783748BB</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TWI783748BB</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TWI783748BB3</originalsourceid><addsrcrecordid>eNrjZOAKCfc0tzA2N7Fw4mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8QgNTsZEKAEAEAYboA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TWI783748B</title><source>esp@cenet</source><creator>HUANG, WEI-HUA ; LU, QI-YAN ; LEE, ZONG YAN ; CHEN, JIAN-RONG ; LIN, KUNNG ; ZHOU, QIAN-YU ; ZHONG, XIANG-AN ; CHEN, SI-HUA ; LIU, ZHAO-XIANG ; LEE, KUN YI ; MIAO, YEN HAO</creator><creatorcontrib>HUANG, WEI-HUA ; LU, QI-YAN ; LEE, ZONG YAN ; CHEN, JIAN-RONG ; LIN, KUNNG ; ZHOU, QIAN-YU ; ZHONG, XIANG-AN ; CHEN, SI-HUA ; LIU, ZHAO-XIANG ; LEE, KUN YI ; MIAO, YEN HAO</creatorcontrib><description>This invention discloses a method and a system of image recognition for an obstacle avoidance flight control for an unmanned aerial vehicle (UAV) by applying the deep learning and applications thereof. The system includes a UAV, a wireless communication unit and an information processing unit. The UAV includes a flight control module and an image capturing device. The flight control module controls the flight of the UAV according to a flight path. The image capturing device continuously captures flight status of the UAV and images it as a flight image. The information processing unit receives the flight image through the wireless communication unit. The information processing unit contains a deep learning algorithm module and a feature database with an object feature sample built in. Each object feature sample is defined with an object name. The deep learning algorithm module is configured to extract the object feature for each flight image and input it into the feature database to predict a probability of ma</description><language>chi</language><subject>AEROPLANES ; AIRCRAFT ; AVIATION ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COSMONAUTICS ; COUNTING ; HELICOPTERS ; PERFORMING OPERATIONS ; PHYSICS ; TRANSPORTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221111&amp;DB=EPODOC&amp;CC=TW&amp;NR=I783748B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221111&amp;DB=EPODOC&amp;CC=TW&amp;NR=I783748B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG, WEI-HUA</creatorcontrib><creatorcontrib>LU, QI-YAN</creatorcontrib><creatorcontrib>LEE, ZONG YAN</creatorcontrib><creatorcontrib>CHEN, JIAN-RONG</creatorcontrib><creatorcontrib>LIN, KUNNG</creatorcontrib><creatorcontrib>ZHOU, QIAN-YU</creatorcontrib><creatorcontrib>ZHONG, XIANG-AN</creatorcontrib><creatorcontrib>CHEN, SI-HUA</creatorcontrib><creatorcontrib>LIU, ZHAO-XIANG</creatorcontrib><creatorcontrib>LEE, KUN YI</creatorcontrib><creatorcontrib>MIAO, YEN HAO</creatorcontrib><title>TWI783748B</title><description>This invention discloses a method and a system of image recognition for an obstacle avoidance flight control for an unmanned aerial vehicle (UAV) by applying the deep learning and applications thereof. The system includes a UAV, a wireless communication unit and an information processing unit. The UAV includes a flight control module and an image capturing device. The flight control module controls the flight of the UAV according to a flight path. The image capturing device continuously captures flight status of the UAV and images it as a flight image. The information processing unit receives the flight image through the wireless communication unit. The information processing unit contains a deep learning algorithm module and a feature database with an object feature sample built in. Each object feature sample is defined with an object name. The deep learning algorithm module is configured to extract the object feature for each flight image and input it into the feature database to predict a probability of ma</description><subject>AEROPLANES</subject><subject>AIRCRAFT</subject><subject>AVIATION</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COSMONAUTICS</subject><subject>COUNTING</subject><subject>HELICOPTERS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZOAKCfc0tzA2N7Fw4mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8QgNTsZEKAEAEAYboA</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>HUANG, WEI-HUA</creator><creator>LU, QI-YAN</creator><creator>LEE, ZONG YAN</creator><creator>CHEN, JIAN-RONG</creator><creator>LIN, KUNNG</creator><creator>ZHOU, QIAN-YU</creator><creator>ZHONG, XIANG-AN</creator><creator>CHEN, SI-HUA</creator><creator>LIU, ZHAO-XIANG</creator><creator>LEE, KUN YI</creator><creator>MIAO, YEN HAO</creator><scope>EVB</scope></search><sort><creationdate>20221111</creationdate><title>TWI783748B</title><author>HUANG, WEI-HUA ; LU, QI-YAN ; LEE, ZONG YAN ; CHEN, JIAN-RONG ; LIN, KUNNG ; ZHOU, QIAN-YU ; ZHONG, XIANG-AN ; CHEN, SI-HUA ; LIU, ZHAO-XIANG ; LEE, KUN YI ; MIAO, YEN HAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TWI783748BB3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi</language><creationdate>2022</creationdate><topic>AEROPLANES</topic><topic>AIRCRAFT</topic><topic>AVIATION</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COSMONAUTICS</topic><topic>COUNTING</topic><topic>HELICOPTERS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG, WEI-HUA</creatorcontrib><creatorcontrib>LU, QI-YAN</creatorcontrib><creatorcontrib>LEE, ZONG YAN</creatorcontrib><creatorcontrib>CHEN, JIAN-RONG</creatorcontrib><creatorcontrib>LIN, KUNNG</creatorcontrib><creatorcontrib>ZHOU, QIAN-YU</creatorcontrib><creatorcontrib>ZHONG, XIANG-AN</creatorcontrib><creatorcontrib>CHEN, SI-HUA</creatorcontrib><creatorcontrib>LIU, ZHAO-XIANG</creatorcontrib><creatorcontrib>LEE, KUN YI</creatorcontrib><creatorcontrib>MIAO, YEN HAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG, WEI-HUA</au><au>LU, QI-YAN</au><au>LEE, ZONG YAN</au><au>CHEN, JIAN-RONG</au><au>LIN, KUNNG</au><au>ZHOU, QIAN-YU</au><au>ZHONG, XIANG-AN</au><au>CHEN, SI-HUA</au><au>LIU, ZHAO-XIANG</au><au>LEE, KUN YI</au><au>MIAO, YEN HAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TWI783748B</title><date>2022-11-11</date><risdate>2022</risdate><abstract>This invention discloses a method and a system of image recognition for an obstacle avoidance flight control for an unmanned aerial vehicle (UAV) by applying the deep learning and applications thereof. The system includes a UAV, a wireless communication unit and an information processing unit. The UAV includes a flight control module and an image capturing device. The flight control module controls the flight of the UAV according to a flight path. The image capturing device continuously captures flight status of the UAV and images it as a flight image. The information processing unit receives the flight image through the wireless communication unit. The information processing unit contains a deep learning algorithm module and a feature database with an object feature sample built in. Each object feature sample is defined with an object name. The deep learning algorithm module is configured to extract the object feature for each flight image and input it into the feature database to predict a probability of ma</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi
recordid cdi_epo_espacenet_TWI783748BB
source esp@cenet
subjects AEROPLANES
AIRCRAFT
AVIATION
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COSMONAUTICS
COUNTING
HELICOPTERS
PERFORMING OPERATIONS
PHYSICS
TRANSPORTING
title TWI783748B
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG,%20WEI-HUA&rft.date=2022-11-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETWI783748BB%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true