ARTIFICIAL INTELLIGENCE DEFECT IMAGE CLASSIFICATION METHOD AND SYSTEM THEREOF
An artificial intelligence defect image classification method and a system are provide. The method includes: transferring a MEMS microphone product to a specific location by a transfer unit; positioning the MEMS microphone product by a positioning unit; scanning the MEMS microphone product to captur...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LUO, ANUN LU, CHING-LUNG SHEN, CHIH-MING LIANG, MING-KAAN DAI, MING-JI SHEN, CHING-SHIANG YANG, HUNG-YU DENG, YU-SHAN CHUANG, YAIN |
description | An artificial intelligence defect image classification method and a system are provide. The method includes: transferring a MEMS microphone product to a specific location by a transfer unit; positioning the MEMS microphone product by a positioning unit; scanning the MEMS microphone product to capture a test image by a first image capturing device; comparing the test image to a plurality of reference images, and determining a defect classification of the test image based on a comparison result; marking a defect area on the test image based on the comparison result; and classifying and storing the MEMS microphone product based on the defect classification. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TWI765364BB</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TWI765364BB</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TWI765364BB3</originalsourceid><addsrcrecordid>eNqNyjsKwkAQANBtLES9w1zAKhrryexsdmA_kB0QqxDCWokG4v0RwQNYveZtTcRBxQkJBpCkHIL0nIjBsmNSkIg9AwUs5dtQJSeIrD5bwGSh3IpyBPU8cHZ7s7lPj7Uefu4MOFbyx7q8xrou01yf9T3qVS7tuWlPXdf8UT6Q8C5H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARTIFICIAL INTELLIGENCE DEFECT IMAGE CLASSIFICATION METHOD AND SYSTEM THEREOF</title><source>esp@cenet</source><creator>LUO, ANUN ; LU, CHING-LUNG ; SHEN, CHIH-MING ; LIANG, MING-KAAN ; DAI, MING-JI ; SHEN, CHING-SHIANG ; YANG, HUNG-YU ; DENG, YU-SHAN ; CHUANG, YAIN</creator><creatorcontrib>LUO, ANUN ; LU, CHING-LUNG ; SHEN, CHIH-MING ; LIANG, MING-KAAN ; DAI, MING-JI ; SHEN, CHING-SHIANG ; YANG, HUNG-YU ; DENG, YU-SHAN ; CHUANG, YAIN</creatorcontrib><description>An artificial intelligence defect image classification method and a system are provide. The method includes: transferring a MEMS microphone product to a specific location by a transfer unit; positioning the MEMS microphone product by a positioning unit; scanning the MEMS microphone product to capture a test image by a first image capturing device; comparing the test image to a plurality of reference images, and determining a defect classification of the test image based on a comparison result; marking a defect area on the test image based on the comparison result; and classifying and storing the MEMS microphone product based on the defect classification.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DEAF-AID SETS ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS ; MEASURING ; PHYSICS ; PUBLIC ADDRESS SYSTEMS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220521&DB=EPODOC&CC=TW&NR=I765364B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220521&DB=EPODOC&CC=TW&NR=I765364B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO, ANUN</creatorcontrib><creatorcontrib>LU, CHING-LUNG</creatorcontrib><creatorcontrib>SHEN, CHIH-MING</creatorcontrib><creatorcontrib>LIANG, MING-KAAN</creatorcontrib><creatorcontrib>DAI, MING-JI</creatorcontrib><creatorcontrib>SHEN, CHING-SHIANG</creatorcontrib><creatorcontrib>YANG, HUNG-YU</creatorcontrib><creatorcontrib>DENG, YU-SHAN</creatorcontrib><creatorcontrib>CHUANG, YAIN</creatorcontrib><title>ARTIFICIAL INTELLIGENCE DEFECT IMAGE CLASSIFICATION METHOD AND SYSTEM THEREOF</title><description>An artificial intelligence defect image classification method and a system are provide. The method includes: transferring a MEMS microphone product to a specific location by a transfer unit; positioning the MEMS microphone product by a positioning unit; scanning the MEMS microphone product to capture a test image by a first image capturing device; comparing the test image to a plurality of reference images, and determining a defect classification of the test image based on a comparison result; marking a defect area on the test image based on the comparison result; and classifying and storing the MEMS microphone product based on the defect classification.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DEAF-AID SETS</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PUBLIC ADDRESS SYSTEMS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsKwkAQANBtLES9w1zAKhrryexsdmA_kB0QqxDCWokG4v0RwQNYveZtTcRBxQkJBpCkHIL0nIjBsmNSkIg9AwUs5dtQJSeIrD5bwGSh3IpyBPU8cHZ7s7lPj7Uefu4MOFbyx7q8xrou01yf9T3qVS7tuWlPXdf8UT6Q8C5H</recordid><startdate>20220521</startdate><enddate>20220521</enddate><creator>LUO, ANUN</creator><creator>LU, CHING-LUNG</creator><creator>SHEN, CHIH-MING</creator><creator>LIANG, MING-KAAN</creator><creator>DAI, MING-JI</creator><creator>SHEN, CHING-SHIANG</creator><creator>YANG, HUNG-YU</creator><creator>DENG, YU-SHAN</creator><creator>CHUANG, YAIN</creator><scope>EVB</scope></search><sort><creationdate>20220521</creationdate><title>ARTIFICIAL INTELLIGENCE DEFECT IMAGE CLASSIFICATION METHOD AND SYSTEM THEREOF</title><author>LUO, ANUN ; LU, CHING-LUNG ; SHEN, CHIH-MING ; LIANG, MING-KAAN ; DAI, MING-JI ; SHEN, CHING-SHIANG ; YANG, HUNG-YU ; DENG, YU-SHAN ; CHUANG, YAIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TWI765364BB3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DEAF-AID SETS</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PUBLIC ADDRESS SYSTEMS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO, ANUN</creatorcontrib><creatorcontrib>LU, CHING-LUNG</creatorcontrib><creatorcontrib>SHEN, CHIH-MING</creatorcontrib><creatorcontrib>LIANG, MING-KAAN</creatorcontrib><creatorcontrib>DAI, MING-JI</creatorcontrib><creatorcontrib>SHEN, CHING-SHIANG</creatorcontrib><creatorcontrib>YANG, HUNG-YU</creatorcontrib><creatorcontrib>DENG, YU-SHAN</creatorcontrib><creatorcontrib>CHUANG, YAIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO, ANUN</au><au>LU, CHING-LUNG</au><au>SHEN, CHIH-MING</au><au>LIANG, MING-KAAN</au><au>DAI, MING-JI</au><au>SHEN, CHING-SHIANG</au><au>YANG, HUNG-YU</au><au>DENG, YU-SHAN</au><au>CHUANG, YAIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARTIFICIAL INTELLIGENCE DEFECT IMAGE CLASSIFICATION METHOD AND SYSTEM THEREOF</title><date>2022-05-21</date><risdate>2022</risdate><abstract>An artificial intelligence defect image classification method and a system are provide. The method includes: transferring a MEMS microphone product to a specific location by a transfer unit; positioning the MEMS microphone product by a positioning unit; scanning the MEMS microphone product to capture a test image by a first image capturing device; comparing the test image to a plurality of reference images, and determining a defect classification of the test image based on a comparison result; marking a defect area on the test image based on the comparison result; and classifying and storing the MEMS microphone product based on the defect classification.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_TWI765364BB |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DEAF-AID SETS ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY IMAGE DATA PROCESSING OR GENERATION, IN GENERAL INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS MEASURING PHYSICS PUBLIC ADDRESS SYSTEMS TESTING |
title | ARTIFICIAL INTELLIGENCE DEFECT IMAGE CLASSIFICATION METHOD AND SYSTEM THEREOF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO,%20ANUN&rft.date=2022-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETWI765364BB%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |