TWI661461B
This plasma processing method includes a film formation step, a plasma processing step and a removal step. In the film formation step, a silicon oxide film is formed on the surface of a member within a chamber by means of plasma of an oxygen-containing gas and a silicon-containing gas at a flow rate...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MIYAGAWA, MASAAKI HIRAYAMA, YUSUKE |
description | This plasma processing method includes a film formation step, a plasma processing step and a removal step. In the film formation step, a silicon oxide film is formed on the surface of a member within a chamber by means of plasma of an oxygen-containing gas and a silicon-containing gas at a flow rate ratio of the oxygen-containing gas to the silicon-containing gas of 0.2-1.4. In the plasma processing step, after the formation of the silicon oxide film on the surface of the member, an object to be processed that has been carried into the chamber is subjected to plasma processing with use of plasma of a processing gas. In the removal step, after carrying the plasma-processed object out of the chamber, the silicon oxide film is removed from the surface of the member by means of plasma of a fluorine-containing gas. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TWI661461BB</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TWI661461BB</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TWI661461BB3</originalsourceid><addsrcrecordid>eNrjZOAKCfc0MzM0MTN04mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8QgNTsZEKAEACRobeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TWI661461B</title><source>esp@cenet</source><creator>MIYAGAWA, MASAAKI ; HIRAYAMA, YUSUKE</creator><creatorcontrib>MIYAGAWA, MASAAKI ; HIRAYAMA, YUSUKE</creatorcontrib><description>This plasma processing method includes a film formation step, a plasma processing step and a removal step. In the film formation step, a silicon oxide film is formed on the surface of a member within a chamber by means of plasma of an oxygen-containing gas and a silicon-containing gas at a flow rate ratio of the oxygen-containing gas to the silicon-containing gas of 0.2-1.4. In the plasma processing step, after the formation of the silicon oxide film on the surface of the member, an object to be processed that has been carried into the chamber is subjected to plasma processing with use of plasma of a processing gas. In the removal step, after carrying the plasma-processed object out of the chamber, the silicon oxide film is removed from the surface of the member by means of plasma of a fluorine-containing gas.</description><language>chi</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190601&DB=EPODOC&CC=TW&NR=I661461B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190601&DB=EPODOC&CC=TW&NR=I661461B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIYAGAWA, MASAAKI</creatorcontrib><creatorcontrib>HIRAYAMA, YUSUKE</creatorcontrib><title>TWI661461B</title><description>This plasma processing method includes a film formation step, a plasma processing step and a removal step. In the film formation step, a silicon oxide film is formed on the surface of a member within a chamber by means of plasma of an oxygen-containing gas and a silicon-containing gas at a flow rate ratio of the oxygen-containing gas to the silicon-containing gas of 0.2-1.4. In the plasma processing step, after the formation of the silicon oxide film on the surface of the member, an object to be processed that has been carried into the chamber is subjected to plasma processing with use of plasma of a processing gas. In the removal step, after carrying the plasma-processed object out of the chamber, the silicon oxide film is removed from the surface of the member by means of plasma of a fluorine-containing gas.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZOAKCfc0MzM0MTN04mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8QgNTsZEKAEACRobeQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>MIYAGAWA, MASAAKI</creator><creator>HIRAYAMA, YUSUKE</creator><scope>EVB</scope></search><sort><creationdate>20190601</creationdate><title>TWI661461B</title><author>MIYAGAWA, MASAAKI ; HIRAYAMA, YUSUKE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TWI661461BB3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi</language><creationdate>2019</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>MIYAGAWA, MASAAKI</creatorcontrib><creatorcontrib>HIRAYAMA, YUSUKE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIYAGAWA, MASAAKI</au><au>HIRAYAMA, YUSUKE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TWI661461B</title><date>2019-06-01</date><risdate>2019</risdate><abstract>This plasma processing method includes a film formation step, a plasma processing step and a removal step. In the film formation step, a silicon oxide film is formed on the surface of a member within a chamber by means of plasma of an oxygen-containing gas and a silicon-containing gas at a flow rate ratio of the oxygen-containing gas to the silicon-containing gas of 0.2-1.4. In the plasma processing step, after the formation of the silicon oxide film on the surface of the member, an object to be processed that has been carried into the chamber is subjected to plasma processing with use of plasma of a processing gas. In the removal step, after carrying the plasma-processed object out of the chamber, the silicon oxide film is removed from the surface of the member by means of plasma of a fluorine-containing gas.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi |
recordid | cdi_epo_espacenet_TWI661461BB |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | TWI661461B |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIYAGAWA,%20MASAAKI&rft.date=2019-06-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETWI661461BB%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |