Generating and globally tuning application-specific machine learning accelerators

Methods, systems, and apparatus, including computer-readable media, are described for globally tuning and generating ML hardware accelerators. A design system selects an architecture representing a baseline processor configuration. An ML cost model of the system generates performance data about the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHUANG, HAO, NUNES COELHO JUNIOR, CLAUDIONOR JOSE, YANG, YANG, KUUSELA, AKI OSKARI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHUANG, HAO
NUNES COELHO JUNIOR, CLAUDIONOR JOSE
YANG, YANG
KUUSELA, AKI OSKARI
description Methods, systems, and apparatus, including computer-readable media, are described for globally tuning and generating ML hardware accelerators. A design system selects an architecture representing a baseline processor configuration. An ML cost model of the system generates performance data about the architecture at least by modeling how the architecture executes computations of a neural network that includes multiple layers. Based on the performance data, the architecture is dynamically tuned to satisfy a performance objective when the architecture implements the neural network and executes machine-learning computations for a target application. In response to dynamically tuning the architecture, the system generates a configuration of an ML accelerator that specifies customized hardware configurations for implementing each of the multiple layers of the neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TW202244792A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TW202244792A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TW202244792A3</originalsourceid><addsrcrecordid>eNrjZAh0T81LLUosycxLV0jMS1FIz8lPSszJqVQoKc0DixUU5GQmA-Xz83SLC1KTM9MykxVyE5MzMvNSFXJSE4sgqpKTU3NAxuQXFfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsRkoI0l8SHhRgZGRiYm5pZGjsbEqAEALc44kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Generating and globally tuning application-specific machine learning accelerators</title><source>esp@cenet</source><creator>ZHUANG, HAO ; NUNES COELHO JUNIOR, CLAUDIONOR JOSE ; YANG, YANG ; KUUSELA, AKI OSKARI</creator><creatorcontrib>ZHUANG, HAO ; NUNES COELHO JUNIOR, CLAUDIONOR JOSE ; YANG, YANG ; KUUSELA, AKI OSKARI</creatorcontrib><description>Methods, systems, and apparatus, including computer-readable media, are described for globally tuning and generating ML hardware accelerators. A design system selects an architecture representing a baseline processor configuration. An ML cost model of the system generates performance data about the architecture at least by modeling how the architecture executes computations of a neural network that includes multiple layers. Based on the performance data, the architecture is dynamically tuned to satisfy a performance objective when the architecture implements the neural network and executes machine-learning computations for a target application. In response to dynamically tuning the architecture, the system generates a configuration of an ML accelerator that specifies customized hardware configurations for implementing each of the multiple layers of the neural network.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221116&amp;DB=EPODOC&amp;CC=TW&amp;NR=202244792A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221116&amp;DB=EPODOC&amp;CC=TW&amp;NR=202244792A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHUANG, HAO</creatorcontrib><creatorcontrib>NUNES COELHO JUNIOR, CLAUDIONOR JOSE</creatorcontrib><creatorcontrib>YANG, YANG</creatorcontrib><creatorcontrib>KUUSELA, AKI OSKARI</creatorcontrib><title>Generating and globally tuning application-specific machine learning accelerators</title><description>Methods, systems, and apparatus, including computer-readable media, are described for globally tuning and generating ML hardware accelerators. A design system selects an architecture representing a baseline processor configuration. An ML cost model of the system generates performance data about the architecture at least by modeling how the architecture executes computations of a neural network that includes multiple layers. Based on the performance data, the architecture is dynamically tuned to satisfy a performance objective when the architecture implements the neural network and executes machine-learning computations for a target application. In response to dynamically tuning the architecture, the system generates a configuration of an ML accelerator that specifies customized hardware configurations for implementing each of the multiple layers of the neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh0T81LLUosycxLV0jMS1FIz8lPSszJqVQoKc0DixUU5GQmA-Xz83SLC1KTM9MykxVyE5MzMvNSFXJSE4sgqpKTU3NAxuQXFfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsRkoI0l8SHhRgZGRiYm5pZGjsbEqAEALc44kg</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>ZHUANG, HAO</creator><creator>NUNES COELHO JUNIOR, CLAUDIONOR JOSE</creator><creator>YANG, YANG</creator><creator>KUUSELA, AKI OSKARI</creator><scope>EVB</scope></search><sort><creationdate>20221116</creationdate><title>Generating and globally tuning application-specific machine learning accelerators</title><author>ZHUANG, HAO ; NUNES COELHO JUNIOR, CLAUDIONOR JOSE ; YANG, YANG ; KUUSELA, AKI OSKARI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TW202244792A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHUANG, HAO</creatorcontrib><creatorcontrib>NUNES COELHO JUNIOR, CLAUDIONOR JOSE</creatorcontrib><creatorcontrib>YANG, YANG</creatorcontrib><creatorcontrib>KUUSELA, AKI OSKARI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHUANG, HAO</au><au>NUNES COELHO JUNIOR, CLAUDIONOR JOSE</au><au>YANG, YANG</au><au>KUUSELA, AKI OSKARI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Generating and globally tuning application-specific machine learning accelerators</title><date>2022-11-16</date><risdate>2022</risdate><abstract>Methods, systems, and apparatus, including computer-readable media, are described for globally tuning and generating ML hardware accelerators. A design system selects an architecture representing a baseline processor configuration. An ML cost model of the system generates performance data about the architecture at least by modeling how the architecture executes computations of a neural network that includes multiple layers. Based on the performance data, the architecture is dynamically tuned to satisfy a performance objective when the architecture implements the neural network and executes machine-learning computations for a target application. In response to dynamically tuning the architecture, the system generates a configuration of an ML accelerator that specifies customized hardware configurations for implementing each of the multiple layers of the neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_TW202244792A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Generating and globally tuning application-specific machine learning accelerators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHUANG,%20HAO&rft.date=2022-11-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETW202244792A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true