Improved corrosion resistance of additively-manufactured zirconium alloys

A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MUELLER, ANDREW J, CLEARY, WILLIAM T, LIMBACK, MAGNUS, COMSTOCK, ROBERT J, MUNDORFF, JONNA PARTEZANA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MUELLER, ANDREW J
CLEARY, WILLIAM T
LIMBACK, MAGNUS
COMSTOCK, ROBERT J
MUNDORFF, JONNA PARTEZANA
description A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TW202102690A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TW202102690A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TW202102690A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAuDqL-Q_yAQowgOBZR7F5wLEdygYMkF3JJoX69Dn6A01vethvHmAsv6JTlUliIkyooJBWSRcVegXNUacGw9hFS82BrK9__pmI5UYsKQuBV9t3GQxA8_Nx1x8d9uj17zDyjZLCYsM7Ty2hz0uZy1cP5n_MBfSU2CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Improved corrosion resistance of additively-manufactured zirconium alloys</title><source>esp@cenet</source><creator>MUELLER, ANDREW J ; CLEARY, WILLIAM T ; LIMBACK, MAGNUS ; COMSTOCK, ROBERT J ; MUNDORFF, JONNA PARTEZANA</creator><creatorcontrib>MUELLER, ANDREW J ; CLEARY, WILLIAM T ; LIMBACK, MAGNUS ; COMSTOCK, ROBERT J ; MUNDORFF, JONNA PARTEZANA</creatorcontrib><description>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.</description><language>chi ; eng</language><subject>ADDITIVE MANUFACTURING TECHNOLOGY ; ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ; ALLOYS ; CHEMISTRY ; FERROUS OR NON-FERROUS ALLOYS ; METALLURGY ; NUCLEAR ENGINEERING ; NUCLEAR PHYSICS ; NUCLEAR REACTORS ; PERFORMING OPERATIONS ; PHYSICS ; TRANSPORTING ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210116&amp;DB=EPODOC&amp;CC=TW&amp;NR=202102690A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210116&amp;DB=EPODOC&amp;CC=TW&amp;NR=202102690A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MUELLER, ANDREW J</creatorcontrib><creatorcontrib>CLEARY, WILLIAM T</creatorcontrib><creatorcontrib>LIMBACK, MAGNUS</creatorcontrib><creatorcontrib>COMSTOCK, ROBERT J</creatorcontrib><creatorcontrib>MUNDORFF, JONNA PARTEZANA</creatorcontrib><title>Improved corrosion resistance of additively-manufactured zirconium alloys</title><description>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.</description><subject>ADDITIVE MANUFACTURING TECHNOLOGY</subject><subject>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</subject><subject>ALLOYS</subject><subject>CHEMISTRY</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>METALLURGY</subject><subject>NUCLEAR ENGINEERING</subject><subject>NUCLEAR PHYSICS</subject><subject>NUCLEAR REACTORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>TRANSPORTING</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAuDqL-Q_yAQowgOBZR7F5wLEdygYMkF3JJoX69Dn6A01vethvHmAsv6JTlUliIkyooJBWSRcVegXNUacGw9hFS82BrK9__pmI5UYsKQuBV9t3GQxA8_Nx1x8d9uj17zDyjZLCYsM7Ty2hz0uZy1cP5n_MBfSU2CQ</recordid><startdate>20210116</startdate><enddate>20210116</enddate><creator>MUELLER, ANDREW J</creator><creator>CLEARY, WILLIAM T</creator><creator>LIMBACK, MAGNUS</creator><creator>COMSTOCK, ROBERT J</creator><creator>MUNDORFF, JONNA PARTEZANA</creator><scope>EVB</scope></search><sort><creationdate>20210116</creationdate><title>Improved corrosion resistance of additively-manufactured zirconium alloys</title><author>MUELLER, ANDREW J ; CLEARY, WILLIAM T ; LIMBACK, MAGNUS ; COMSTOCK, ROBERT J ; MUNDORFF, JONNA PARTEZANA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TW202102690A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ADDITIVE MANUFACTURING TECHNOLOGY</topic><topic>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</topic><topic>ALLOYS</topic><topic>CHEMISTRY</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>METALLURGY</topic><topic>NUCLEAR ENGINEERING</topic><topic>NUCLEAR PHYSICS</topic><topic>NUCLEAR REACTORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>TRANSPORTING</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>MUELLER, ANDREW J</creatorcontrib><creatorcontrib>CLEARY, WILLIAM T</creatorcontrib><creatorcontrib>LIMBACK, MAGNUS</creatorcontrib><creatorcontrib>COMSTOCK, ROBERT J</creatorcontrib><creatorcontrib>MUNDORFF, JONNA PARTEZANA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MUELLER, ANDREW J</au><au>CLEARY, WILLIAM T</au><au>LIMBACK, MAGNUS</au><au>COMSTOCK, ROBERT J</au><au>MUNDORFF, JONNA PARTEZANA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Improved corrosion resistance of additively-manufactured zirconium alloys</title><date>2021-01-16</date><risdate>2021</risdate><abstract>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_TW202102690A
source esp@cenet
subjects ADDITIVE MANUFACTURING TECHNOLOGY
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
ALLOYS
CHEMISTRY
FERROUS OR NON-FERROUS ALLOYS
METALLURGY
NUCLEAR ENGINEERING
NUCLEAR PHYSICS
NUCLEAR REACTORS
PERFORMING OPERATIONS
PHYSICS
TRANSPORTING
TREATMENT OF ALLOYS OR NON-FERROUS METALS
title Improved corrosion resistance of additively-manufactured zirconium alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MUELLER,%20ANDREW%20J&rft.date=2021-01-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETW202102690A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true