Method for clustering huge amount of data and data mining system adopting the same
A method for clustering a huge amount of data is provided to improve upon the low analysis efficiency of the conventional clustering method. The method includes presenting the data in a form of histograms having a first data, a second data, and an amount of data meeting both the first data and the s...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TSAY, YUH-JIUAN YU, REN-WU PAN, YI-RONG KUNG, HSU-YANG LIN, MEI-HSIEN CHENG, HUI-TING |
description | A method for clustering a huge amount of data is provided to improve upon the low analysis efficiency of the conventional clustering method. The method includes presenting the data in a form of histograms having a first data, a second data, and an amount of data meeting both the first data and the second data, generating a first projection result based on the first data and the amount of data and, setting a reference dividing point according to a clustering rule, generating a plurality of first clusters based on the negative peaks of the first projection result which has a smaller amount of data than the reference dividing point, generating a plurality of second projection results through projections of the plurality of first clusters and the second data, and clustering the second projection results through the clustering rule to generate a plurality of second clusters according to the clustering rule. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TW202024947A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TW202024947A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TW202024947A3</originalsourceid><addsrcrecordid>eNrjZAjyTS3JyE9RSMsvUkjOKS0uSS3KzEtXyChNT1VIzM0vzStRyE9TSEksSVRIzEuBMHIz80BqiiuBqnMVElPyC0pA_JKMVIXixNxUHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oSHxJuZACEJpYm5o7GxKgBAOeZN84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for clustering huge amount of data and data mining system adopting the same</title><source>esp@cenet</source><creator>TSAY, YUH-JIUAN ; YU, REN-WU ; PAN, YI-RONG ; KUNG, HSU-YANG ; LIN, MEI-HSIEN ; CHENG, HUI-TING</creator><creatorcontrib>TSAY, YUH-JIUAN ; YU, REN-WU ; PAN, YI-RONG ; KUNG, HSU-YANG ; LIN, MEI-HSIEN ; CHENG, HUI-TING</creatorcontrib><description>A method for clustering a huge amount of data is provided to improve upon the low analysis efficiency of the conventional clustering method. The method includes presenting the data in a form of histograms having a first data, a second data, and an amount of data meeting both the first data and the second data, generating a first projection result based on the first data and the amount of data and, setting a reference dividing point according to a clustering rule, generating a plurality of first clusters based on the negative peaks of the first projection result which has a smaller amount of data than the reference dividing point, generating a plurality of second projection results through projections of the plurality of first clusters and the second data, and clustering the second projection results through the clustering rule to generate a plurality of second clusters according to the clustering rule.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200701&DB=EPODOC&CC=TW&NR=202024947A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200701&DB=EPODOC&CC=TW&NR=202024947A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TSAY, YUH-JIUAN</creatorcontrib><creatorcontrib>YU, REN-WU</creatorcontrib><creatorcontrib>PAN, YI-RONG</creatorcontrib><creatorcontrib>KUNG, HSU-YANG</creatorcontrib><creatorcontrib>LIN, MEI-HSIEN</creatorcontrib><creatorcontrib>CHENG, HUI-TING</creatorcontrib><title>Method for clustering huge amount of data and data mining system adopting the same</title><description>A method for clustering a huge amount of data is provided to improve upon the low analysis efficiency of the conventional clustering method. The method includes presenting the data in a form of histograms having a first data, a second data, and an amount of data meeting both the first data and the second data, generating a first projection result based on the first data and the amount of data and, setting a reference dividing point according to a clustering rule, generating a plurality of first clusters based on the negative peaks of the first projection result which has a smaller amount of data than the reference dividing point, generating a plurality of second projection results through projections of the plurality of first clusters and the second data, and clustering the second projection results through the clustering rule to generate a plurality of second clusters according to the clustering rule.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjyTS3JyE9RSMsvUkjOKS0uSS3KzEtXyChNT1VIzM0vzStRyE9TSEksSVRIzEuBMHIz80BqiiuBqnMVElPyC0pA_JKMVIXixNxUHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oSHxJuZACEJpYm5o7GxKgBAOeZN84</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>TSAY, YUH-JIUAN</creator><creator>YU, REN-WU</creator><creator>PAN, YI-RONG</creator><creator>KUNG, HSU-YANG</creator><creator>LIN, MEI-HSIEN</creator><creator>CHENG, HUI-TING</creator><scope>EVB</scope></search><sort><creationdate>20200701</creationdate><title>Method for clustering huge amount of data and data mining system adopting the same</title><author>TSAY, YUH-JIUAN ; YU, REN-WU ; PAN, YI-RONG ; KUNG, HSU-YANG ; LIN, MEI-HSIEN ; CHENG, HUI-TING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TW202024947A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TSAY, YUH-JIUAN</creatorcontrib><creatorcontrib>YU, REN-WU</creatorcontrib><creatorcontrib>PAN, YI-RONG</creatorcontrib><creatorcontrib>KUNG, HSU-YANG</creatorcontrib><creatorcontrib>LIN, MEI-HSIEN</creatorcontrib><creatorcontrib>CHENG, HUI-TING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TSAY, YUH-JIUAN</au><au>YU, REN-WU</au><au>PAN, YI-RONG</au><au>KUNG, HSU-YANG</au><au>LIN, MEI-HSIEN</au><au>CHENG, HUI-TING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for clustering huge amount of data and data mining system adopting the same</title><date>2020-07-01</date><risdate>2020</risdate><abstract>A method for clustering a huge amount of data is provided to improve upon the low analysis efficiency of the conventional clustering method. The method includes presenting the data in a form of histograms having a first data, a second data, and an amount of data meeting both the first data and the second data, generating a first projection result based on the first data and the amount of data and, setting a reference dividing point according to a clustering rule, generating a plurality of first clusters based on the negative peaks of the first projection result which has a smaller amount of data than the reference dividing point, generating a plurality of second projection results through projections of the plurality of first clusters and the second data, and clustering the second projection results through the clustering rule to generate a plurality of second clusters according to the clustering rule.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_TW202024947A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Method for clustering huge amount of data and data mining system adopting the same |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TSAY,%20YUH-JIUAN&rft.date=2020-07-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETW202024947A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |