Training task optimization system, training task optimization method and non-transitory computer readable medium for operating the same

A training task optimization system includes a processor. The processor is configured to receive training environment information of a training task. The training environment information at least carries information corresponding to training samples in the training task. The processor is configured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TSAO, CHIAIN, CHEN, CHUN-YEN, WU, JUI-LIN, CHOU, CHUN-NAN, LIN, TING-WEI, CHANG, EDWARD ZHI-WEI, SUNG, CHENG-LUNG, ZOU, SHANG-XUAN, TUNG, KUANIEH
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TSAO, CHIAIN
CHEN, CHUN-YEN
WU, JUI-LIN
CHOU, CHUN-NAN
LIN, TING-WEI
CHANG, EDWARD ZHI-WEI
SUNG, CHENG-LUNG
ZOU, SHANG-XUAN
TUNG, KUANIEH
description A training task optimization system includes a processor. The processor is configured to receive training environment information of a training task. The training environment information at least carries information corresponding to training samples in the training task. The processor is configured to calculate a memory distribution for the training task based on memory factors, the training samples and a neural network, and select a mini-batch size that is fit to the memory distribution. In response to the training environment information, the processor is configured to output the mini-batch size for execution of the training task.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_TW201903624A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TW201903624A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_TW201903624A3</originalsourceid><addsrcrecordid>eNqNzDEKwkAQQNE0FqLeYewNxEQESxHFAwQsw5gdzWJ2ZtmdFPECXtsVbAWr3zz-NHvVAS1bvoNifIB4tc4-Ua0wxDEquRXob-JIOzGAbICF8yQ5WpUwQivOD0oBAqHBa0_JGjs4uElIDwpp8Fl2BBEdzbPJDftIi29n2fJ0rA_nnLw0FD22xKRNfSmL9a6otuVmX_1j3mlQTVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training task optimization system, training task optimization method and non-transitory computer readable medium for operating the same</title><source>esp@cenet</source><creator>TSAO, CHIAIN ; CHEN, CHUN-YEN ; WU, JUI-LIN ; CHOU, CHUN-NAN ; LIN, TING-WEI ; CHANG, EDWARD ZHI-WEI ; SUNG, CHENG-LUNG ; ZOU, SHANG-XUAN ; TUNG, KUANIEH</creator><creatorcontrib>TSAO, CHIAIN ; CHEN, CHUN-YEN ; WU, JUI-LIN ; CHOU, CHUN-NAN ; LIN, TING-WEI ; CHANG, EDWARD ZHI-WEI ; SUNG, CHENG-LUNG ; ZOU, SHANG-XUAN ; TUNG, KUANIEH</creatorcontrib><description>A training task optimization system includes a processor. The processor is configured to receive training environment information of a training task. The training environment information at least carries information corresponding to training samples in the training task. The processor is configured to calculate a memory distribution for the training task based on memory factors, the training samples and a neural network, and select a mini-batch size that is fit to the memory distribution. In response to the training environment information, the processor is configured to output the mini-batch size for execution of the training task.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190116&amp;DB=EPODOC&amp;CC=TW&amp;NR=201903624A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190116&amp;DB=EPODOC&amp;CC=TW&amp;NR=201903624A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TSAO, CHIAIN</creatorcontrib><creatorcontrib>CHEN, CHUN-YEN</creatorcontrib><creatorcontrib>WU, JUI-LIN</creatorcontrib><creatorcontrib>CHOU, CHUN-NAN</creatorcontrib><creatorcontrib>LIN, TING-WEI</creatorcontrib><creatorcontrib>CHANG, EDWARD ZHI-WEI</creatorcontrib><creatorcontrib>SUNG, CHENG-LUNG</creatorcontrib><creatorcontrib>ZOU, SHANG-XUAN</creatorcontrib><creatorcontrib>TUNG, KUANIEH</creatorcontrib><title>Training task optimization system, training task optimization method and non-transitory computer readable medium for operating the same</title><description>A training task optimization system includes a processor. The processor is configured to receive training environment information of a training task. The training environment information at least carries information corresponding to training samples in the training task. The processor is configured to calculate a memory distribution for the training task based on memory factors, the training samples and a neural network, and select a mini-batch size that is fit to the memory distribution. In response to the training environment information, the processor is configured to output the mini-batch size for execution of the training task.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQQNE0FqLeYewNxEQESxHFAwQsw5gdzWJ2ZtmdFPECXtsVbAWr3zz-NHvVAS1bvoNifIB4tc4-Ua0wxDEquRXob-JIOzGAbICF8yQ5WpUwQivOD0oBAqHBa0_JGjs4uElIDwpp8Fl2BBEdzbPJDftIi29n2fJ0rA_nnLw0FD22xKRNfSmL9a6otuVmX_1j3mlQTVc</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>TSAO, CHIAIN</creator><creator>CHEN, CHUN-YEN</creator><creator>WU, JUI-LIN</creator><creator>CHOU, CHUN-NAN</creator><creator>LIN, TING-WEI</creator><creator>CHANG, EDWARD ZHI-WEI</creator><creator>SUNG, CHENG-LUNG</creator><creator>ZOU, SHANG-XUAN</creator><creator>TUNG, KUANIEH</creator><scope>EVB</scope></search><sort><creationdate>20190116</creationdate><title>Training task optimization system, training task optimization method and non-transitory computer readable medium for operating the same</title><author>TSAO, CHIAIN ; CHEN, CHUN-YEN ; WU, JUI-LIN ; CHOU, CHUN-NAN ; LIN, TING-WEI ; CHANG, EDWARD ZHI-WEI ; SUNG, CHENG-LUNG ; ZOU, SHANG-XUAN ; TUNG, KUANIEH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_TW201903624A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TSAO, CHIAIN</creatorcontrib><creatorcontrib>CHEN, CHUN-YEN</creatorcontrib><creatorcontrib>WU, JUI-LIN</creatorcontrib><creatorcontrib>CHOU, CHUN-NAN</creatorcontrib><creatorcontrib>LIN, TING-WEI</creatorcontrib><creatorcontrib>CHANG, EDWARD ZHI-WEI</creatorcontrib><creatorcontrib>SUNG, CHENG-LUNG</creatorcontrib><creatorcontrib>ZOU, SHANG-XUAN</creatorcontrib><creatorcontrib>TUNG, KUANIEH</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TSAO, CHIAIN</au><au>CHEN, CHUN-YEN</au><au>WU, JUI-LIN</au><au>CHOU, CHUN-NAN</au><au>LIN, TING-WEI</au><au>CHANG, EDWARD ZHI-WEI</au><au>SUNG, CHENG-LUNG</au><au>ZOU, SHANG-XUAN</au><au>TUNG, KUANIEH</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training task optimization system, training task optimization method and non-transitory computer readable medium for operating the same</title><date>2019-01-16</date><risdate>2019</risdate><abstract>A training task optimization system includes a processor. The processor is configured to receive training environment information of a training task. The training environment information at least carries information corresponding to training samples in the training task. The processor is configured to calculate a memory distribution for the training task based on memory factors, the training samples and a neural network, and select a mini-batch size that is fit to the memory distribution. In response to the training environment information, the processor is configured to output the mini-batch size for execution of the training task.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_TW201903624A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Training task optimization system, training task optimization method and non-transitory computer readable medium for operating the same
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TSAO,%20CHIAIN&rft.date=2019-01-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ETW201903624A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true