GENERATING GROUND TRUTH FOR MACHINE LEARNING FROM TIME SERIES ELEMENTS

Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: POLIN, Joseph, BAUCH, Matthew, ELLUSWAMY, Ashok Kumar, KARPATHY, Andrej, PAYNE, Christopher
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator POLIN, Joseph
BAUCH, Matthew
ELLUSWAMY, Ashok Kumar
KARPATHY, Andrej
PAYNE, Christopher
description Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of time series elements in the group of time series elements. A processor is used to train a machine learning model using the training dataset.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_SG11202108322QA</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SG11202108322QA</sourcerecordid><originalsourceid>FETCH-epo_espacenet_SG11202108322QA3</originalsourceid><addsrcrecordid>eNqNyr0KwjAQAOAsDqK-ww2uQpMurqFefqC54OU6lyJxKrVQ3x8RfACnb_n2ynkkZCuRPHjOA91AeJAALjMk24VICD1apu9wnBNITAgFOWIB7DEhSTmq3XOat3r6eVBnh9KFS11fY93W6VGX-h6L19o0RjfX1pi7bf9sH7qILbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GENERATING GROUND TRUTH FOR MACHINE LEARNING FROM TIME SERIES ELEMENTS</title><source>esp@cenet</source><creator>POLIN, Joseph ; BAUCH, Matthew ; ELLUSWAMY, Ashok Kumar ; KARPATHY, Andrej ; PAYNE, Christopher</creator><creatorcontrib>POLIN, Joseph ; BAUCH, Matthew ; ELLUSWAMY, Ashok Kumar ; KARPATHY, Andrej ; PAYNE, Christopher</creatorcontrib><description>Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of time series elements in the group of time series elements. A processor is used to train a machine learning model using the training dataset.</description><language>eng</language><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210830&amp;DB=EPODOC&amp;CC=SG&amp;NR=11202108322QA$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210830&amp;DB=EPODOC&amp;CC=SG&amp;NR=11202108322QA$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>POLIN, Joseph</creatorcontrib><creatorcontrib>BAUCH, Matthew</creatorcontrib><creatorcontrib>ELLUSWAMY, Ashok Kumar</creatorcontrib><creatorcontrib>KARPATHY, Andrej</creatorcontrib><creatorcontrib>PAYNE, Christopher</creatorcontrib><title>GENERATING GROUND TRUTH FOR MACHINE LEARNING FROM TIME SERIES ELEMENTS</title><description>Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of time series elements in the group of time series elements. A processor is used to train a machine learning model using the training dataset.</description><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAQAOAsDqK-ww2uQpMurqFefqC54OU6lyJxKrVQ3x8RfACnb_n2ynkkZCuRPHjOA91AeJAALjMk24VICD1apu9wnBNITAgFOWIB7DEhSTmq3XOat3r6eVBnh9KFS11fY93W6VGX-h6L19o0RjfX1pi7bf9sH7qILbQ</recordid><startdate>20210830</startdate><enddate>20210830</enddate><creator>POLIN, Joseph</creator><creator>BAUCH, Matthew</creator><creator>ELLUSWAMY, Ashok Kumar</creator><creator>KARPATHY, Andrej</creator><creator>PAYNE, Christopher</creator><scope>EVB</scope></search><sort><creationdate>20210830</creationdate><title>GENERATING GROUND TRUTH FOR MACHINE LEARNING FROM TIME SERIES ELEMENTS</title><author>POLIN, Joseph ; BAUCH, Matthew ; ELLUSWAMY, Ashok Kumar ; KARPATHY, Andrej ; PAYNE, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_SG11202108322QA3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>POLIN, Joseph</creatorcontrib><creatorcontrib>BAUCH, Matthew</creatorcontrib><creatorcontrib>ELLUSWAMY, Ashok Kumar</creatorcontrib><creatorcontrib>KARPATHY, Andrej</creatorcontrib><creatorcontrib>PAYNE, Christopher</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>POLIN, Joseph</au><au>BAUCH, Matthew</au><au>ELLUSWAMY, Ashok Kumar</au><au>KARPATHY, Andrej</au><au>PAYNE, Christopher</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GENERATING GROUND TRUTH FOR MACHINE LEARNING FROM TIME SERIES ELEMENTS</title><date>2021-08-30</date><risdate>2021</risdate><abstract>Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of time series elements in the group of time series elements. A processor is used to train a machine learning model using the training dataset.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_SG11202108322QA
source esp@cenet
subjects INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title GENERATING GROUND TRUTH FOR MACHINE LEARNING FROM TIME SERIES ELEMENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=POLIN,%20Joseph&rft.date=2021-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ESG11202108322QA%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true