SYSTEM AND METHOD OF FEATURE DETECTION IN SATELLITE IMAGES USING NEURAL NETWORKS
The present invention generally relates to systems and methods 5 of classification and localization of features of interest in remote aerial images. It relates particularly to a system and method of classifying and localizing features of interest on satellite images by semantic segmentation using a...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DELA CRUZ, Roel M DIFUNTORUM, John Keithley I GELIDO, Marion Clarisse L FELICEN, Machele M OLFINDO, Nestor, Jr T MARCIANO, Joseph Jr S |
description | The present invention generally relates to systems and methods 5 of classification and localization of features of interest in remote aerial images. It relates particularly to a system and method of classifying and localizing features of interest on satellite images by semantic segmentation using a trained deep learning convolutional neural network. Increasing the accuracy of classification and localization requires that the neural network to decipher the difference between the feature of interest and other features in the background. This invention addresses the problem of low accuracy in classifying and localizing pixels corresponding to the feature of interest by enabling the user to include more information together with the original pixel values in the satellite images. An exemplary embodiment of this invention is a system and method of locating mango trees in a plantation in Bataan province, Philippines using a U-net convolutional network. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_PH12020050067A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PH12020050067A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_PH12020050067A13</originalsourceid><addsrcrecordid>eNqNyr0KwjAQAOAsDqK-ww2uQlpR59BemmB-Su6COJUicRIt1PdHBx_A6Vu-pejpSoweVGjBI5vYQtSgUXFOCC0yNmxjABuAFKNzlhGsVx0SZLKhg4A5KfeFLzGdaS0W9_Exl83Pldhq5MbsyvQayjyNt_Is76E3VS1rKQ9SHk-q2v_ZPoE6MDI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD OF FEATURE DETECTION IN SATELLITE IMAGES USING NEURAL NETWORKS</title><source>esp@cenet</source><creator>DELA CRUZ, Roel M ; DIFUNTORUM, John Keithley I ; GELIDO, Marion Clarisse L ; FELICEN, Machele M ; OLFINDO, Nestor, Jr T ; MARCIANO, Joseph Jr S</creator><creatorcontrib>DELA CRUZ, Roel M ; DIFUNTORUM, John Keithley I ; GELIDO, Marion Clarisse L ; FELICEN, Machele M ; OLFINDO, Nestor, Jr T ; MARCIANO, Joseph Jr S</creatorcontrib><description>The present invention generally relates to systems and methods 5 of classification and localization of features of interest in remote aerial images. It relates particularly to a system and method of classifying and localizing features of interest on satellite images by semantic segmentation using a trained deep learning convolutional neural network. Increasing the accuracy of classification and localization requires that the neural network to decipher the difference between the feature of interest and other features in the background. This invention addresses the problem of low accuracy in classifying and localizing pixels corresponding to the feature of interest by enabling the user to include more information together with the original pixel values in the satellite images. An exemplary embodiment of this invention is a system and method of locating mango trees in a plantation in Bataan province, Philippines using a U-net convolutional network.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211018&DB=EPODOC&CC=PH&NR=12020050067A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211018&DB=EPODOC&CC=PH&NR=12020050067A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DELA CRUZ, Roel M</creatorcontrib><creatorcontrib>DIFUNTORUM, John Keithley I</creatorcontrib><creatorcontrib>GELIDO, Marion Clarisse L</creatorcontrib><creatorcontrib>FELICEN, Machele M</creatorcontrib><creatorcontrib>OLFINDO, Nestor, Jr T</creatorcontrib><creatorcontrib>MARCIANO, Joseph Jr S</creatorcontrib><title>SYSTEM AND METHOD OF FEATURE DETECTION IN SATELLITE IMAGES USING NEURAL NETWORKS</title><description>The present invention generally relates to systems and methods 5 of classification and localization of features of interest in remote aerial images. It relates particularly to a system and method of classifying and localizing features of interest on satellite images by semantic segmentation using a trained deep learning convolutional neural network. Increasing the accuracy of classification and localization requires that the neural network to decipher the difference between the feature of interest and other features in the background. This invention addresses the problem of low accuracy in classifying and localizing pixels corresponding to the feature of interest by enabling the user to include more information together with the original pixel values in the satellite images. An exemplary embodiment of this invention is a system and method of locating mango trees in a plantation in Bataan province, Philippines using a U-net convolutional network.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAQAOAsDqK-ww2uQlpR59BemmB-Su6COJUicRIt1PdHBx_A6Vu-pejpSoweVGjBI5vYQtSgUXFOCC0yNmxjABuAFKNzlhGsVx0SZLKhg4A5KfeFLzGdaS0W9_Exl83Pldhq5MbsyvQayjyNt_Is76E3VS1rKQ9SHk-q2v_ZPoE6MDI</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>DELA CRUZ, Roel M</creator><creator>DIFUNTORUM, John Keithley I</creator><creator>GELIDO, Marion Clarisse L</creator><creator>FELICEN, Machele M</creator><creator>OLFINDO, Nestor, Jr T</creator><creator>MARCIANO, Joseph Jr S</creator><scope>EVB</scope></search><sort><creationdate>20211018</creationdate><title>SYSTEM AND METHOD OF FEATURE DETECTION IN SATELLITE IMAGES USING NEURAL NETWORKS</title><author>DELA CRUZ, Roel M ; DIFUNTORUM, John Keithley I ; GELIDO, Marion Clarisse L ; FELICEN, Machele M ; OLFINDO, Nestor, Jr T ; MARCIANO, Joseph Jr S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_PH12020050067A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>DELA CRUZ, Roel M</creatorcontrib><creatorcontrib>DIFUNTORUM, John Keithley I</creatorcontrib><creatorcontrib>GELIDO, Marion Clarisse L</creatorcontrib><creatorcontrib>FELICEN, Machele M</creatorcontrib><creatorcontrib>OLFINDO, Nestor, Jr T</creatorcontrib><creatorcontrib>MARCIANO, Joseph Jr S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DELA CRUZ, Roel M</au><au>DIFUNTORUM, John Keithley I</au><au>GELIDO, Marion Clarisse L</au><au>FELICEN, Machele M</au><au>OLFINDO, Nestor, Jr T</au><au>MARCIANO, Joseph Jr S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD OF FEATURE DETECTION IN SATELLITE IMAGES USING NEURAL NETWORKS</title><date>2021-10-18</date><risdate>2021</risdate><abstract>The present invention generally relates to systems and methods 5 of classification and localization of features of interest in remote aerial images. It relates particularly to a system and method of classifying and localizing features of interest on satellite images by semantic segmentation using a trained deep learning convolutional neural network. Increasing the accuracy of classification and localization requires that the neural network to decipher the difference between the feature of interest and other features in the background. This invention addresses the problem of low accuracy in classifying and localizing pixels corresponding to the feature of interest by enabling the user to include more information together with the original pixel values in the satellite images. An exemplary embodiment of this invention is a system and method of locating mango trees in a plantation in Bataan province, Philippines using a U-net convolutional network.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_PH12020050067A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | SYSTEM AND METHOD OF FEATURE DETECTION IN SATELLITE IMAGES USING NEURAL NETWORKS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DELA%20CRUZ,%20Roel%20M&rft.date=2021-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EPH12020050067A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |