Fremgangsmåte for borehulls-logging av omgivende grunnformasjon ved bruk av direktive elektromagnetiske bølger

En ny, direkte databehandlingsteknikk er nyttig når det gjelder å ekstrahere signaler fra den asimutale variasjonen av retningsmålinger innsamlet ved hjelp av et loggeinstrument i et borehull. De relevante grense-, anisotropi- og sprekksignalene blir ekstrahert fra formasjonsresponsen ved tilpasning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG LIBO, HU LINGYUN, CHOU LAWRENCE, OMERAGIC DZEVAT, LI QUIMING, DUMONT ALAIN
Format: Patent
Sprache:nor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG LIBO
HU LINGYUN
CHOU LAWRENCE
OMERAGIC DZEVAT
LI QUIMING
DUMONT ALAIN
description En ny, direkte databehandlingsteknikk er nyttig når det gjelder å ekstrahere signaler fra den asimutale variasjonen av retningsmålinger innsamlet ved hjelp av et loggeinstrument i et borehull. De relevante grense-, anisotropi- og sprekksignalene blir ekstrahert fra formasjonsresponsen ved tilpasning av den asimutale variasjonen av de målte spenninger til en eller annen sinusfunksjon. Orienteringen av lagdelingen blir også oppnådd som et resultat. De ekstraherte retningssignalene er nyttige for å fremskaffe grenseavstander og for å ta geostyringsbeslutninger. To teknikker som innebærer invertering og kryssplotting kan anvendes, avhengig av beskaffenheten til grensen. Et grafisk brukergrensesnitt (GUI) er en del av et system for å lette fleksibel bestemmelse av inverteringsformålene, for å forbedre inverteringsresultatene og for å visualisere formasjonsmodellen samt inverteringsmålinger. A diagraph in a borehole is arranged so at least one of its antennae is inclined to the instrument axis to have a magnetic dipole corresponding to an azimuth angle. While the diagraph is rotated in the borehole, electromagnetic energy is emitted and the resulting voltage signals measured directionally as a function of the azimuth orientation of the diagraph. The diagraph is equipped with at least first emitting and receiving antennae separated by a first distance, at least one of the first antennae having a magnetic dipole inclined relative to the longitudinal axis of the instrument, the antennae being oriented around the axis of the instrument so at least one inclined magnetic dipole corresponds to a first azimuth angle. The azimuth variation of the first signals is adjusted by approximation functions. The adjusting stage is executed while the first voltage signals are measured and the adjustment is stopped when a convergence is reached. The adjustment functions are sinewaves defined by the coupling components of the magnetic dipoles of the first emitting antennae and the orientation vectors of the first receiving antennae. The adjustment functions are functions of the rock formation parameters including the resistivity of the rock layers, the position of the diagraph, the deviation of the probe, the azimuth angle at the diagraph position or a combination of the above. The adjustment coefficients are terms of constants, sinphi , cosphi , sin2phi and cos2phi which define an iterative adjustment algorithm to determine the azimuth proportion of the directional vectors. The adj
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_NO335727BB1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NO335727BB1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_NO335727BB13</originalsourceid><addsrcrecordid>eNqNyzsOgkAUhWEaC6Pu4W6AQomhx0istLEngxyuA_Mgd4AduQd7NuaYuACr8xffWSdDKbCsHAe7vEZQ64VqL3hOxoTUeGbtmNRM3rKe4RoQy-RcdFaFzjua0VAtU_9FjRb0Y3QEE0O8Veww6tCD6uVtGLJNVq0yAbvfbhIqz_fTJcXgK4RBPRAf1fWWZcf8kBfFPvuDfAA-Z0XC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fremgangsmåte for borehulls-logging av omgivende grunnformasjon ved bruk av direktive elektromagnetiske bølger</title><source>esp@cenet</source><creator>YANG LIBO ; HU LINGYUN ; CHOU LAWRENCE ; OMERAGIC DZEVAT ; LI QUIMING ; DUMONT ALAIN</creator><creatorcontrib>YANG LIBO ; HU LINGYUN ; CHOU LAWRENCE ; OMERAGIC DZEVAT ; LI QUIMING ; DUMONT ALAIN</creatorcontrib><description>En ny, direkte databehandlingsteknikk er nyttig når det gjelder å ekstrahere signaler fra den asimutale variasjonen av retningsmålinger innsamlet ved hjelp av et loggeinstrument i et borehull. De relevante grense-, anisotropi- og sprekksignalene blir ekstrahert fra formasjonsresponsen ved tilpasning av den asimutale variasjonen av de målte spenninger til en eller annen sinusfunksjon. Orienteringen av lagdelingen blir også oppnådd som et resultat. De ekstraherte retningssignalene er nyttige for å fremskaffe grenseavstander og for å ta geostyringsbeslutninger. To teknikker som innebærer invertering og kryssplotting kan anvendes, avhengig av beskaffenheten til grensen. Et grafisk brukergrensesnitt (GUI) er en del av et system for å lette fleksibel bestemmelse av inverteringsformålene, for å forbedre inverteringsresultatene og for å visualisere formasjonsmodellen samt inverteringsmålinger. A diagraph in a borehole is arranged so at least one of its antennae is inclined to the instrument axis to have a magnetic dipole corresponding to an azimuth angle. While the diagraph is rotated in the borehole, electromagnetic energy is emitted and the resulting voltage signals measured directionally as a function of the azimuth orientation of the diagraph. The diagraph is equipped with at least first emitting and receiving antennae separated by a first distance, at least one of the first antennae having a magnetic dipole inclined relative to the longitudinal axis of the instrument, the antennae being oriented around the axis of the instrument so at least one inclined magnetic dipole corresponds to a first azimuth angle. The azimuth variation of the first signals is adjusted by approximation functions. The adjusting stage is executed while the first voltage signals are measured and the adjustment is stopped when a convergence is reached. The adjustment functions are sinewaves defined by the coupling components of the magnetic dipoles of the first emitting antennae and the orientation vectors of the first receiving antennae. The adjustment functions are functions of the rock formation parameters including the resistivity of the rock layers, the position of the diagraph, the deviation of the probe, the azimuth angle at the diagraph position or a combination of the above. The adjustment coefficients are terms of constants, sinphi , cosphi , sin2phi and cos2phi which define an iterative adjustment algorithm to determine the azimuth proportion of the directional vectors. The adjustment algorithm is used to select directional measurements in real time to be used as guidance. The diagraph also has second emitting and receiving antennae spaced from the first and arranged so the second azimuth angle is 90[deg] from the first. The second antennae are arranged and operated like the first. The dephasing and attenuation between the two sets of voltage measurements are calculated and combined to generate a symmetrical or asymmetrical measurement. Only one of the first antennae has an inclined magnetic dipole and the noise of the first and second voltage signals is measured using the second harmonic coefficients. Alternatively, all the first antennae have inclined magnetic dipoles and the adjustment coefficients and noise are measured using the third harmonic coefficients. An independent claim describes the equipment for carrying out this method, using a diagraph with first and second pairs of emitting/receiving antennae and data handling and recording equipment.</description><language>nor</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150202&amp;DB=EPODOC&amp;CC=NO&amp;NR=335727B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150202&amp;DB=EPODOC&amp;CC=NO&amp;NR=335727B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG LIBO</creatorcontrib><creatorcontrib>HU LINGYUN</creatorcontrib><creatorcontrib>CHOU LAWRENCE</creatorcontrib><creatorcontrib>OMERAGIC DZEVAT</creatorcontrib><creatorcontrib>LI QUIMING</creatorcontrib><creatorcontrib>DUMONT ALAIN</creatorcontrib><title>Fremgangsmåte for borehulls-logging av omgivende grunnformasjon ved bruk av direktive elektromagnetiske bølger</title><description>En ny, direkte databehandlingsteknikk er nyttig når det gjelder å ekstrahere signaler fra den asimutale variasjonen av retningsmålinger innsamlet ved hjelp av et loggeinstrument i et borehull. De relevante grense-, anisotropi- og sprekksignalene blir ekstrahert fra formasjonsresponsen ved tilpasning av den asimutale variasjonen av de målte spenninger til en eller annen sinusfunksjon. Orienteringen av lagdelingen blir også oppnådd som et resultat. De ekstraherte retningssignalene er nyttige for å fremskaffe grenseavstander og for å ta geostyringsbeslutninger. To teknikker som innebærer invertering og kryssplotting kan anvendes, avhengig av beskaffenheten til grensen. Et grafisk brukergrensesnitt (GUI) er en del av et system for å lette fleksibel bestemmelse av inverteringsformålene, for å forbedre inverteringsresultatene og for å visualisere formasjonsmodellen samt inverteringsmålinger. A diagraph in a borehole is arranged so at least one of its antennae is inclined to the instrument axis to have a magnetic dipole corresponding to an azimuth angle. While the diagraph is rotated in the borehole, electromagnetic energy is emitted and the resulting voltage signals measured directionally as a function of the azimuth orientation of the diagraph. The diagraph is equipped with at least first emitting and receiving antennae separated by a first distance, at least one of the first antennae having a magnetic dipole inclined relative to the longitudinal axis of the instrument, the antennae being oriented around the axis of the instrument so at least one inclined magnetic dipole corresponds to a first azimuth angle. The azimuth variation of the first signals is adjusted by approximation functions. The adjusting stage is executed while the first voltage signals are measured and the adjustment is stopped when a convergence is reached. The adjustment functions are sinewaves defined by the coupling components of the magnetic dipoles of the first emitting antennae and the orientation vectors of the first receiving antennae. The adjustment functions are functions of the rock formation parameters including the resistivity of the rock layers, the position of the diagraph, the deviation of the probe, the azimuth angle at the diagraph position or a combination of the above. The adjustment coefficients are terms of constants, sinphi , cosphi , sin2phi and cos2phi which define an iterative adjustment algorithm to determine the azimuth proportion of the directional vectors. The adjustment algorithm is used to select directional measurements in real time to be used as guidance. The diagraph also has second emitting and receiving antennae spaced from the first and arranged so the second azimuth angle is 90[deg] from the first. The second antennae are arranged and operated like the first. The dephasing and attenuation between the two sets of voltage measurements are calculated and combined to generate a symmetrical or asymmetrical measurement. Only one of the first antennae has an inclined magnetic dipole and the noise of the first and second voltage signals is measured using the second harmonic coefficients. Alternatively, all the first antennae have inclined magnetic dipoles and the adjustment coefficients and noise are measured using the third harmonic coefficients. An independent claim describes the equipment for carrying out this method, using a diagraph with first and second pairs of emitting/receiving antennae and data handling and recording equipment.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzsOgkAUhWEaC6Pu4W6AQomhx0istLEngxyuA_Mgd4AduQd7NuaYuACr8xffWSdDKbCsHAe7vEZQ64VqL3hOxoTUeGbtmNRM3rKe4RoQy-RcdFaFzjua0VAtU_9FjRb0Y3QEE0O8Veww6tCD6uVtGLJNVq0yAbvfbhIqz_fTJcXgK4RBPRAf1fWWZcf8kBfFPvuDfAA-Z0XC</recordid><startdate>20150202</startdate><enddate>20150202</enddate><creator>YANG LIBO</creator><creator>HU LINGYUN</creator><creator>CHOU LAWRENCE</creator><creator>OMERAGIC DZEVAT</creator><creator>LI QUIMING</creator><creator>DUMONT ALAIN</creator><scope>EVB</scope></search><sort><creationdate>20150202</creationdate><title>Fremgangsmåte for borehulls-logging av omgivende grunnformasjon ved bruk av direktive elektromagnetiske bølger</title><author>YANG LIBO ; HU LINGYUN ; CHOU LAWRENCE ; OMERAGIC DZEVAT ; LI QUIMING ; DUMONT ALAIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_NO335727BB13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>nor</language><creationdate>2015</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG LIBO</creatorcontrib><creatorcontrib>HU LINGYUN</creatorcontrib><creatorcontrib>CHOU LAWRENCE</creatorcontrib><creatorcontrib>OMERAGIC DZEVAT</creatorcontrib><creatorcontrib>LI QUIMING</creatorcontrib><creatorcontrib>DUMONT ALAIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG LIBO</au><au>HU LINGYUN</au><au>CHOU LAWRENCE</au><au>OMERAGIC DZEVAT</au><au>LI QUIMING</au><au>DUMONT ALAIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fremgangsmåte for borehulls-logging av omgivende grunnformasjon ved bruk av direktive elektromagnetiske bølger</title><date>2015-02-02</date><risdate>2015</risdate><abstract>En ny, direkte databehandlingsteknikk er nyttig når det gjelder å ekstrahere signaler fra den asimutale variasjonen av retningsmålinger innsamlet ved hjelp av et loggeinstrument i et borehull. De relevante grense-, anisotropi- og sprekksignalene blir ekstrahert fra formasjonsresponsen ved tilpasning av den asimutale variasjonen av de målte spenninger til en eller annen sinusfunksjon. Orienteringen av lagdelingen blir også oppnådd som et resultat. De ekstraherte retningssignalene er nyttige for å fremskaffe grenseavstander og for å ta geostyringsbeslutninger. To teknikker som innebærer invertering og kryssplotting kan anvendes, avhengig av beskaffenheten til grensen. Et grafisk brukergrensesnitt (GUI) er en del av et system for å lette fleksibel bestemmelse av inverteringsformålene, for å forbedre inverteringsresultatene og for å visualisere formasjonsmodellen samt inverteringsmålinger. A diagraph in a borehole is arranged so at least one of its antennae is inclined to the instrument axis to have a magnetic dipole corresponding to an azimuth angle. While the diagraph is rotated in the borehole, electromagnetic energy is emitted and the resulting voltage signals measured directionally as a function of the azimuth orientation of the diagraph. The diagraph is equipped with at least first emitting and receiving antennae separated by a first distance, at least one of the first antennae having a magnetic dipole inclined relative to the longitudinal axis of the instrument, the antennae being oriented around the axis of the instrument so at least one inclined magnetic dipole corresponds to a first azimuth angle. The azimuth variation of the first signals is adjusted by approximation functions. The adjusting stage is executed while the first voltage signals are measured and the adjustment is stopped when a convergence is reached. The adjustment functions are sinewaves defined by the coupling components of the magnetic dipoles of the first emitting antennae and the orientation vectors of the first receiving antennae. The adjustment functions are functions of the rock formation parameters including the resistivity of the rock layers, the position of the diagraph, the deviation of the probe, the azimuth angle at the diagraph position or a combination of the above. The adjustment coefficients are terms of constants, sinphi , cosphi , sin2phi and cos2phi which define an iterative adjustment algorithm to determine the azimuth proportion of the directional vectors. The adjustment algorithm is used to select directional measurements in real time to be used as guidance. The diagraph also has second emitting and receiving antennae spaced from the first and arranged so the second azimuth angle is 90[deg] from the first. The second antennae are arranged and operated like the first. The dephasing and attenuation between the two sets of voltage measurements are calculated and combined to generate a symmetrical or asymmetrical measurement. Only one of the first antennae has an inclined magnetic dipole and the noise of the first and second voltage signals is measured using the second harmonic coefficients. Alternatively, all the first antennae have inclined magnetic dipoles and the adjustment coefficients and noise are measured using the third harmonic coefficients. An independent claim describes the equipment for carrying out this method, using a diagraph with first and second pairs of emitting/receiving antennae and data handling and recording equipment.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language nor
recordid cdi_epo_espacenet_NO335727BB1
source esp@cenet
subjects DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Fremgangsmåte for borehulls-logging av omgivende grunnformasjon ved bruk av direktive elektromagnetiske bølger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20LIBO&rft.date=2015-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ENO335727BB1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true