DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES
Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the traini...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Roy, Samiran Chaki, Soumi Vallabhaneni, Sridharan |
description | Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_NO20210264A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NO20210264A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_NO20210264A13</originalsourceid><addsrcrecordid>eNrjZLB3cQxx1HUJ8gxz9VNw8fd19PRTcPb3C3MNCvb091MIDfb0c1fwdXT28PRzVfBxdQzyAwmEuDp7-HkGhroG8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeD9_IwMjQwMjMxNHQ2Ni1AAAiJEqcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><source>esp@cenet</source><creator>Roy, Samiran ; Chaki, Soumi ; Vallabhaneni, Sridharan</creator><creatorcontrib>Roy, Samiran ; Chaki, Soumi ; Vallabhaneni, Sridharan</creatorcontrib><description>Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210226&DB=EPODOC&CC=NO&NR=20210264A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210226&DB=EPODOC&CC=NO&NR=20210264A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Roy, Samiran</creatorcontrib><creatorcontrib>Chaki, Soumi</creatorcontrib><creatorcontrib>Vallabhaneni, Sridharan</creatorcontrib><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><description>Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3cQxx1HUJ8gxz9VNw8fd19PRTcPb3C3MNCvb091MIDfb0c1fwdXT28PRzVfBxdQzyAwmEuDp7-HkGhroG8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeD9_IwMjQwMjMxNHQ2Ni1AAAiJEqcw</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Roy, Samiran</creator><creator>Chaki, Soumi</creator><creator>Vallabhaneni, Sridharan</creator><scope>EVB</scope></search><sort><creationdate>20210226</creationdate><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><author>Roy, Samiran ; Chaki, Soumi ; Vallabhaneni, Sridharan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_NO20210264A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Samiran</creatorcontrib><creatorcontrib>Chaki, Soumi</creatorcontrib><creatorcontrib>Vallabhaneni, Sridharan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Samiran</au><au>Chaki, Soumi</au><au>Vallabhaneni, Sridharan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><date>2021-02-26</date><risdate>2021</risdate><abstract>Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_NO20210264A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Roy,%20Samiran&rft.date=2021-02-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ENO20210264A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |