DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES

Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the traini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roy, Samiran, Chaki, Soumi, Vallabhaneni, Sridharan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Roy, Samiran
Chaki, Soumi
Vallabhaneni, Sridharan
description Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_NO20210264A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NO20210264A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_NO20210264A13</originalsourceid><addsrcrecordid>eNrjZLB3cQxx1HUJ8gxz9VNw8fd19PRTcPb3C3MNCvb091MIDfb0c1fwdXT28PRzVfBxdQzyAwmEuDp7-HkGhroG8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeD9_IwMjQwMjMxNHQ2Ni1AAAiJEqcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><source>esp@cenet</source><creator>Roy, Samiran ; Chaki, Soumi ; Vallabhaneni, Sridharan</creator><creatorcontrib>Roy, Samiran ; Chaki, Soumi ; Vallabhaneni, Sridharan</creatorcontrib><description>Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210226&amp;DB=EPODOC&amp;CC=NO&amp;NR=20210264A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210226&amp;DB=EPODOC&amp;CC=NO&amp;NR=20210264A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Roy, Samiran</creatorcontrib><creatorcontrib>Chaki, Soumi</creatorcontrib><creatorcontrib>Vallabhaneni, Sridharan</creatorcontrib><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><description>Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3cQxx1HUJ8gxz9VNw8fd19PRTcPb3C3MNCvb091MIDfb0c1fwdXT28PRzVfBxdQzyAwmEuDp7-HkGhroG8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeD9_IwMjQwMjMxNHQ2Ni1AAAiJEqcw</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Roy, Samiran</creator><creator>Chaki, Soumi</creator><creator>Vallabhaneni, Sridharan</creator><scope>EVB</scope></search><sort><creationdate>20210226</creationdate><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><author>Roy, Samiran ; Chaki, Soumi ; Vallabhaneni, Sridharan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_NO20210264A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Samiran</creatorcontrib><creatorcontrib>Chaki, Soumi</creatorcontrib><creatorcontrib>Vallabhaneni, Sridharan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Samiran</au><au>Chaki, Soumi</au><au>Vallabhaneni, Sridharan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES</title><date>2021-02-26</date><risdate>2021</risdate><abstract>Optimizing seismic to depth conversion to enhance subsurface operations including measuring seismic data in a subsurface formation, dividing the subsurface formation into a training area and a study area, dividing the seismic data into training seismic data and study seismic data, wherein the training seismic data corresponds to the training area, and wherein the study seismic data corresponds to the study area, calculating target depth data corresponding to the training area, training a machine learning model using training inputs and training targets, wherein the training inputs comprise the training seismic data, and wherein the training targets comprise the target depth data, computing, by the machine learning model, output depth data corresponding to the study area based at least in part on the study seismic data, and modifying one or more subsurface operations corresponding to the study area based at least in part on the output depth data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_NO20210264A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title DATA-DRIVEN DOMAIN CONVERSION USING MACHINE LEARNING TECHNIQUES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Roy,%20Samiran&rft.date=2021-02-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ENO20210264A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true