METHOD OF PRODUCING OF SODIUM SILICATE

In order to prepare crystalline sodium silicates having a layered structure, a water content of less than 0.3% by weight and an SiO2 to Na2O molar ratio of (1.9 to 2.1):1 from a water glass solution containing at least 20% by weight of solid, the water glass solution is obtained by reaction of silic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TAPPER,ALEXANDER, SCHIMMEL,G³NTHER, KOTZIAN,MICHAEL, PANTER,HERBERT
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TAPPER,ALEXANDER
SCHIMMEL,G³NTHER
KOTZIAN,MICHAEL
PANTER,HERBERT
description In order to prepare crystalline sodium silicates having a layered structure, a water content of less than 0.3% by weight and an SiO2 to Na2O molar ratio of (1.9 to 2.1):1 from a water glass solution containing at least 20% by weight of solid, the water glass solution is obtained by reaction of silica sand with sodium hydroxide solution in an SiO2 to Na2O molar ratio of (2.0 to 2.3):1 at temperatures of 180 to 240 DEG C and pressures of 10 to 30 bar. This water glass solution is treated in a spray-drying zone with hot air of 200 to 300 DEG C at a residence time of 10 to 25 s and a temperature of the waste gas leaving the spray-drying zone of 90 to 130 DEG C with formation of a pulverulent amorphous sodium silicate having a water content (determined as loss on ignition at 700 DEG C) of 15 to 23% by weight and a bulk density of more than 300 g/l. The pulverulent, amorphous, water-containing sodium silicate is placed in a tilted rotary kiln equipped with means for moving solids and treated therein counter-currently with flue gas at temperatures of more than 500 DEG C to 850 DEG C for 1 to 60 minutes with formation of crystalline sodium silicate. The rotary kiln is insulated here in such a manner that the temperature of its outer wall is less than 60 DEG C. Finally, the crystalline sodium silicate leaving the rotary kiln is comminuted by means of a mechanical crusher to particle sizes of 0.1 to 12 mm.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_LV10763B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>LV10763B</sourcerecordid><originalsourceid>FETCH-epo_espacenet_LV10763B3</originalsourceid><addsrcrecordid>eNrjZFDzdQ3x8HdR8HdTCAjydwl19vRzB3GC_V08Q30Vgj19PJ0dQ1x5GFjTEnOKU3mhNDeDrJtriLOHbmpBfnxqcUFicmpeakm8T5ihgbmZsZMxIXkAqm4h4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD OF PRODUCING OF SODIUM SILICATE</title><source>esp@cenet</source><creator>TAPPER,ALEXANDER ; SCHIMMEL,G³NTHER ; KOTZIAN,MICHAEL ; PANTER,HERBERT</creator><creatorcontrib>TAPPER,ALEXANDER ; SCHIMMEL,G³NTHER ; KOTZIAN,MICHAEL ; PANTER,HERBERT</creatorcontrib><description>In order to prepare crystalline sodium silicates having a layered structure, a water content of less than 0.3% by weight and an SiO2 to Na2O molar ratio of (1.9 to 2.1):1 from a water glass solution containing at least 20% by weight of solid, the water glass solution is obtained by reaction of silica sand with sodium hydroxide solution in an SiO2 to Na2O molar ratio of (2.0 to 2.3):1 at temperatures of 180 to 240 DEG C and pressures of 10 to 30 bar. This water glass solution is treated in a spray-drying zone with hot air of 200 to 300 DEG C at a residence time of 10 to 25 s and a temperature of the waste gas leaving the spray-drying zone of 90 to 130 DEG C with formation of a pulverulent amorphous sodium silicate having a water content (determined as loss on ignition at 700 DEG C) of 15 to 23% by weight and a bulk density of more than 300 g/l. The pulverulent, amorphous, water-containing sodium silicate is placed in a tilted rotary kiln equipped with means for moving solids and treated therein counter-currently with flue gas at temperatures of more than 500 DEG C to 850 DEG C for 1 to 60 minutes with formation of crystalline sodium silicate. The rotary kiln is insulated here in such a manner that the temperature of its outer wall is less than 60 DEG C. Finally, the crystalline sodium silicate leaving the rotary kiln is comminuted by means of a mechanical crusher to particle sizes of 0.1 to 12 mm.</description><edition>6</edition><language>eng</language><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY ; CHEMISTRY ; COMPOUNDS THEREOF ; INORGANIC CHEMISTRY ; METALLURGY ; NON-METALLIC ELEMENTS ; PERFORMING OPERATIONS ; PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL ; THEIR RELEVANT APPARATUS ; TRANSPORTING</subject><creationdate>1995</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19951220&amp;DB=EPODOC&amp;CC=LV&amp;NR=10763B$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19951220&amp;DB=EPODOC&amp;CC=LV&amp;NR=10763B$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TAPPER,ALEXANDER</creatorcontrib><creatorcontrib>SCHIMMEL,G³NTHER</creatorcontrib><creatorcontrib>KOTZIAN,MICHAEL</creatorcontrib><creatorcontrib>PANTER,HERBERT</creatorcontrib><title>METHOD OF PRODUCING OF SODIUM SILICATE</title><description>In order to prepare crystalline sodium silicates having a layered structure, a water content of less than 0.3% by weight and an SiO2 to Na2O molar ratio of (1.9 to 2.1):1 from a water glass solution containing at least 20% by weight of solid, the water glass solution is obtained by reaction of silica sand with sodium hydroxide solution in an SiO2 to Na2O molar ratio of (2.0 to 2.3):1 at temperatures of 180 to 240 DEG C and pressures of 10 to 30 bar. This water glass solution is treated in a spray-drying zone with hot air of 200 to 300 DEG C at a residence time of 10 to 25 s and a temperature of the waste gas leaving the spray-drying zone of 90 to 130 DEG C with formation of a pulverulent amorphous sodium silicate having a water content (determined as loss on ignition at 700 DEG C) of 15 to 23% by weight and a bulk density of more than 300 g/l. The pulverulent, amorphous, water-containing sodium silicate is placed in a tilted rotary kiln equipped with means for moving solids and treated therein counter-currently with flue gas at temperatures of more than 500 DEG C to 850 DEG C for 1 to 60 minutes with formation of crystalline sodium silicate. The rotary kiln is insulated here in such a manner that the temperature of its outer wall is less than 60 DEG C. Finally, the crystalline sodium silicate leaving the rotary kiln is comminuted by means of a mechanical crusher to particle sizes of 0.1 to 12 mm.</description><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>COMPOUNDS THEREOF</subject><subject>INORGANIC CHEMISTRY</subject><subject>METALLURGY</subject><subject>NON-METALLIC ELEMENTS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</subject><subject>THEIR RELEVANT APPARATUS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1995</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFDzdQ3x8HdR8HdTCAjydwl19vRzB3GC_V08Q30Vgj19PJ0dQ1x5GFjTEnOKU3mhNDeDrJtriLOHbmpBfnxqcUFicmpeakm8T5ihgbmZsZMxIXkAqm4h4A</recordid><startdate>19951220</startdate><enddate>19951220</enddate><creator>TAPPER,ALEXANDER</creator><creator>SCHIMMEL,G³NTHER</creator><creator>KOTZIAN,MICHAEL</creator><creator>PANTER,HERBERT</creator><scope>EVB</scope></search><sort><creationdate>19951220</creationdate><title>METHOD OF PRODUCING OF SODIUM SILICATE</title><author>TAPPER,ALEXANDER ; SCHIMMEL,G³NTHER ; KOTZIAN,MICHAEL ; PANTER,HERBERT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_LV10763B3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1995</creationdate><topic>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>COMPOUNDS THEREOF</topic><topic>INORGANIC CHEMISTRY</topic><topic>METALLURGY</topic><topic>NON-METALLIC ELEMENTS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</topic><topic>THEIR RELEVANT APPARATUS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>TAPPER,ALEXANDER</creatorcontrib><creatorcontrib>SCHIMMEL,G³NTHER</creatorcontrib><creatorcontrib>KOTZIAN,MICHAEL</creatorcontrib><creatorcontrib>PANTER,HERBERT</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TAPPER,ALEXANDER</au><au>SCHIMMEL,G³NTHER</au><au>KOTZIAN,MICHAEL</au><au>PANTER,HERBERT</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD OF PRODUCING OF SODIUM SILICATE</title><date>1995-12-20</date><risdate>1995</risdate><abstract>In order to prepare crystalline sodium silicates having a layered structure, a water content of less than 0.3% by weight and an SiO2 to Na2O molar ratio of (1.9 to 2.1):1 from a water glass solution containing at least 20% by weight of solid, the water glass solution is obtained by reaction of silica sand with sodium hydroxide solution in an SiO2 to Na2O molar ratio of (2.0 to 2.3):1 at temperatures of 180 to 240 DEG C and pressures of 10 to 30 bar. This water glass solution is treated in a spray-drying zone with hot air of 200 to 300 DEG C at a residence time of 10 to 25 s and a temperature of the waste gas leaving the spray-drying zone of 90 to 130 DEG C with formation of a pulverulent amorphous sodium silicate having a water content (determined as loss on ignition at 700 DEG C) of 15 to 23% by weight and a bulk density of more than 300 g/l. The pulverulent, amorphous, water-containing sodium silicate is placed in a tilted rotary kiln equipped with means for moving solids and treated therein counter-currently with flue gas at temperatures of more than 500 DEG C to 850 DEG C for 1 to 60 minutes with formation of crystalline sodium silicate. The rotary kiln is insulated here in such a manner that the temperature of its outer wall is less than 60 DEG C. Finally, the crystalline sodium silicate leaving the rotary kiln is comminuted by means of a mechanical crusher to particle sizes of 0.1 to 12 mm.</abstract><edition>6</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_LV10763B
source esp@cenet
subjects CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY
CHEMISTRY
COMPOUNDS THEREOF
INORGANIC CHEMISTRY
METALLURGY
NON-METALLIC ELEMENTS
PERFORMING OPERATIONS
PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
THEIR RELEVANT APPARATUS
TRANSPORTING
title METHOD OF PRODUCING OF SODIUM SILICATE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TAPPER,ALEXANDER&rft.date=1995-12-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ELV10763B%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true