Method for extracting feature of machine learning for determining vibration measurement error and vibration measurement error determination system using the same

According to an embodiment of the present invention, a machine learning feature extraction method includes the steps of: measuring vibrations occurring in structures to acquire vibration data; extracting at least one sample data from the vibration data; calculating first statistical information from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG JAE HEUNG, MAENG HYO YOUNG, MOON BYEONG SUK, KIM JU SIK, CHOI BYEONG KEUN, JEON I SEUL, KIM DAE WOONG, KIM MIN HO, YU HYEON TAK
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG JAE HEUNG
MAENG HYO YOUNG
MOON BYEONG SUK
KIM JU SIK
CHOI BYEONG KEUN
JEON I SEUL
KIM DAE WOONG
KIM MIN HO
YU HYEON TAK
description According to an embodiment of the present invention, a machine learning feature extraction method includes the steps of: measuring vibrations occurring in structures to acquire vibration data; extracting at least one sample data from the vibration data; calculating first statistical information from the sample data; and extracting feature information for machine learning which determines whether the vibration data is due to a measurement error based on the first statistical information. 본 발명의 실시예에 따른 머신러닝 특징 추출 방법은, 구조물에서 발생하는 진동을 측정하여 진동 데이터를 획득하는 진동 데이터 획득 단계, 상기 진동 데이터로부터 적어도 하나의 샘플 데이터를 추출하는 단계, 상기 샘플 데이터로부터 제1 통계 정보들을 연산하는 단계 및 상기 제1 통계 정보를 기반으로 상기 진동 데이터가 측정 오류에 의한 것인지를 판단하는 머신 러닝을 위한 특징 정보들을 추출하는 단계를 포함한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR20220166978A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR20220166978A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR20220166978A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAURNNYiHqHD9ZCjBC1FFEEsRH78E1mzUJ2N-z-iB7HmxqjtmI1DO_N9KPHAVK6gpTzhJt4zkXbCymwNB7kFBnOS21BFdjbjrVqAYE3uutXffYs2lky4NCuDKwQvG89tsVP_v1583APAkNNeN1KCQpsMIx6iquA0ScH0Xi7Oa13E9QuQ6g5h4Vk-2MSJ0k8TdPlfLGa_Wc9AeupWDI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for extracting feature of machine learning for determining vibration measurement error and vibration measurement error determination system using the same</title><source>esp@cenet</source><creator>YANG JAE HEUNG ; MAENG HYO YOUNG ; MOON BYEONG SUK ; KIM JU SIK ; CHOI BYEONG KEUN ; JEON I SEUL ; KIM DAE WOONG ; KIM MIN HO ; YU HYEON TAK</creator><creatorcontrib>YANG JAE HEUNG ; MAENG HYO YOUNG ; MOON BYEONG SUK ; KIM JU SIK ; CHOI BYEONG KEUN ; JEON I SEUL ; KIM DAE WOONG ; KIM MIN HO ; YU HYEON TAK</creatorcontrib><description>According to an embodiment of the present invention, a machine learning feature extraction method includes the steps of: measuring vibrations occurring in structures to acquire vibration data; extracting at least one sample data from the vibration data; calculating first statistical information from the sample data; and extracting feature information for machine learning which determines whether the vibration data is due to a measurement error based on the first statistical information. 본 발명의 실시예에 따른 머신러닝 특징 추출 방법은, 구조물에서 발생하는 진동을 측정하여 진동 데이터를 획득하는 진동 데이터 획득 단계, 상기 진동 데이터로부터 적어도 하나의 샘플 데이터를 추출하는 단계, 상기 샘플 데이터로부터 제1 통계 정보들을 연산하는 단계 및 상기 제1 통계 정보를 기반으로 상기 진동 데이터가 측정 오류에 의한 것인지를 판단하는 머신 러닝을 위한 특징 정보들을 추출하는 단계를 포함한다.</description><language>eng ; kor</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221220&amp;DB=EPODOC&amp;CC=KR&amp;NR=20220166978A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221220&amp;DB=EPODOC&amp;CC=KR&amp;NR=20220166978A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG JAE HEUNG</creatorcontrib><creatorcontrib>MAENG HYO YOUNG</creatorcontrib><creatorcontrib>MOON BYEONG SUK</creatorcontrib><creatorcontrib>KIM JU SIK</creatorcontrib><creatorcontrib>CHOI BYEONG KEUN</creatorcontrib><creatorcontrib>JEON I SEUL</creatorcontrib><creatorcontrib>KIM DAE WOONG</creatorcontrib><creatorcontrib>KIM MIN HO</creatorcontrib><creatorcontrib>YU HYEON TAK</creatorcontrib><title>Method for extracting feature of machine learning for determining vibration measurement error and vibration measurement error determination system using the same</title><description>According to an embodiment of the present invention, a machine learning feature extraction method includes the steps of: measuring vibrations occurring in structures to acquire vibration data; extracting at least one sample data from the vibration data; calculating first statistical information from the sample data; and extracting feature information for machine learning which determines whether the vibration data is due to a measurement error based on the first statistical information. 본 발명의 실시예에 따른 머신러닝 특징 추출 방법은, 구조물에서 발생하는 진동을 측정하여 진동 데이터를 획득하는 진동 데이터 획득 단계, 상기 진동 데이터로부터 적어도 하나의 샘플 데이터를 추출하는 단계, 상기 샘플 데이터로부터 제1 통계 정보들을 연산하는 단계 및 상기 제1 통계 정보를 기반으로 상기 진동 데이터가 측정 오류에 의한 것인지를 판단하는 머신 러닝을 위한 특징 정보들을 추출하는 단계를 포함한다.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAURNNYiHqHD9ZCjBC1FFEEsRH78E1mzUJ2N-z-iB7HmxqjtmI1DO_N9KPHAVK6gpTzhJt4zkXbCymwNB7kFBnOS21BFdjbjrVqAYE3uutXffYs2lky4NCuDKwQvG89tsVP_v1583APAkNNeN1KCQpsMIx6iquA0ScH0Xi7Oa13E9QuQ6g5h4Vk-2MSJ0k8TdPlfLGa_Wc9AeupWDI</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>YANG JAE HEUNG</creator><creator>MAENG HYO YOUNG</creator><creator>MOON BYEONG SUK</creator><creator>KIM JU SIK</creator><creator>CHOI BYEONG KEUN</creator><creator>JEON I SEUL</creator><creator>KIM DAE WOONG</creator><creator>KIM MIN HO</creator><creator>YU HYEON TAK</creator><scope>EVB</scope></search><sort><creationdate>20221220</creationdate><title>Method for extracting feature of machine learning for determining vibration measurement error and vibration measurement error determination system using the same</title><author>YANG JAE HEUNG ; MAENG HYO YOUNG ; MOON BYEONG SUK ; KIM JU SIK ; CHOI BYEONG KEUN ; JEON I SEUL ; KIM DAE WOONG ; KIM MIN HO ; YU HYEON TAK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR20220166978A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG JAE HEUNG</creatorcontrib><creatorcontrib>MAENG HYO YOUNG</creatorcontrib><creatorcontrib>MOON BYEONG SUK</creatorcontrib><creatorcontrib>KIM JU SIK</creatorcontrib><creatorcontrib>CHOI BYEONG KEUN</creatorcontrib><creatorcontrib>JEON I SEUL</creatorcontrib><creatorcontrib>KIM DAE WOONG</creatorcontrib><creatorcontrib>KIM MIN HO</creatorcontrib><creatorcontrib>YU HYEON TAK</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG JAE HEUNG</au><au>MAENG HYO YOUNG</au><au>MOON BYEONG SUK</au><au>KIM JU SIK</au><au>CHOI BYEONG KEUN</au><au>JEON I SEUL</au><au>KIM DAE WOONG</au><au>KIM MIN HO</au><au>YU HYEON TAK</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for extracting feature of machine learning for determining vibration measurement error and vibration measurement error determination system using the same</title><date>2022-12-20</date><risdate>2022</risdate><abstract>According to an embodiment of the present invention, a machine learning feature extraction method includes the steps of: measuring vibrations occurring in structures to acquire vibration data; extracting at least one sample data from the vibration data; calculating first statistical information from the sample data; and extracting feature information for machine learning which determines whether the vibration data is due to a measurement error based on the first statistical information. 본 발명의 실시예에 따른 머신러닝 특징 추출 방법은, 구조물에서 발생하는 진동을 측정하여 진동 데이터를 획득하는 진동 데이터 획득 단계, 상기 진동 데이터로부터 적어도 하나의 샘플 데이터를 추출하는 단계, 상기 샘플 데이터로부터 제1 통계 정보들을 연산하는 단계 및 상기 제1 통계 정보를 기반으로 상기 진동 데이터가 측정 오류에 의한 것인지를 판단하는 머신 러닝을 위한 특징 정보들을 추출하는 단계를 포함한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR20220166978A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES
MEASURING
PHYSICS
TESTING
title Method for extracting feature of machine learning for determining vibration measurement error and vibration measurement error determination system using the same
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20JAE%20HEUNG&rft.date=2022-12-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR20220166978A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true