A SYSTEM FOR SEARCHING THE NEW PEPTIDE

The present invention relates to a peptide new material search method and system that can precisely predict the immunoactivity of a target peptide sequence by learning the binding possibility of MHC 1 and an epitope peptide by an artificial intelligence deep learning method. The peptide new material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHIN JAE MIN, PARK HYE JIN, TRAN HUE VY AN, KIM MIN SEOK, KIM SONG MI
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHIN JAE MIN
PARK HYE JIN
TRAN HUE VY AN
KIM MIN SEOK
KIM SONG MI
description The present invention relates to a peptide new material search method and system that can precisely predict the immunoactivity of a target peptide sequence by learning the binding possibility of MHC 1 and an epitope peptide by an artificial intelligence deep learning method. The peptide new material search method according to the present invention comprises the steps of: 1) collecting training data using known epitope peptides of MHC 1 as a positive training set and a human-reference protein sequence having immunotolerance as a negative training set; 2) using the training data collected in step 1) to learn whether the training data and MHC 1 are combined using an artificial intelligence deep learning technique, thereby establishing an epitope peptide prediction model; and 3) inputting an epitope candidate peptide into the epitope peptide prediction model established in step 2) to predict whether the epitope candidate peptide and MHC 1 are combined. 본 발명은MHC 1 과 에피토프 펩타이드의 결합 가능성을 인공지능 딥러닝 학습법으로 학습하여 대상 펩타이드 서열에 대한 면역활성을 정교하게 예측할 수 있는 펩타이드 신물질 탐색 방법 및 시스템에 관한 것으로서, 본 발명에 따른 펩타이드 신물질 탐색 방법은, 1) MHC 1의 알려진 에피토프(epitope) 펩타이드들 포지티브 훈련 세트로, 면역 관용이 있는 휴먼 레퍼런스(Hunan-Reference) 단백질 서열을 네거티브 훈련 세트로 하여 훈련 데이터를 수집하는 단계; 2) 상기 1) 단계에서 수집된 훈련 데이터를 사용하여 인공지능 딥러닝 기법으로 훈련 데이터와 MHC 1의 결합 여부를 학습시켜 에피토프 펩타이드 예측 모델을 확립하는 단계; 3) 에피토프 후보 펩타이드를 상기 2) 단계에서 확립된 에피토프 펩타이드 예측 모델 모델에 입력하여 상기 에피토프 후보 펩타이드와 MHC 1의 결합 여부를 예측하는 단계;를 포함한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR20220151388A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR20220151388A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR20220151388A3</originalsourceid><addsrcrecordid>eNrjZFBzVAiODA5x9VVw8w9SCHZ1DHL28PRzVwjxcFXwcw1XCHANCPF0ceVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfHeQUYGRkYGhqaGxhYWjsbEqQIAL6QkIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A SYSTEM FOR SEARCHING THE NEW PEPTIDE</title><source>esp@cenet</source><creator>SHIN JAE MIN ; PARK HYE JIN ; TRAN HUE VY AN ; KIM MIN SEOK ; KIM SONG MI</creator><creatorcontrib>SHIN JAE MIN ; PARK HYE JIN ; TRAN HUE VY AN ; KIM MIN SEOK ; KIM SONG MI</creatorcontrib><description>The present invention relates to a peptide new material search method and system that can precisely predict the immunoactivity of a target peptide sequence by learning the binding possibility of MHC 1 and an epitope peptide by an artificial intelligence deep learning method. The peptide new material search method according to the present invention comprises the steps of: 1) collecting training data using known epitope peptides of MHC 1 as a positive training set and a human-reference protein sequence having immunotolerance as a negative training set; 2) using the training data collected in step 1) to learn whether the training data and MHC 1 are combined using an artificial intelligence deep learning technique, thereby establishing an epitope peptide prediction model; and 3) inputting an epitope candidate peptide into the epitope peptide prediction model established in step 2) to predict whether the epitope candidate peptide and MHC 1 are combined. 본 발명은MHC 1 과 에피토프 펩타이드의 결합 가능성을 인공지능 딥러닝 학습법으로 학습하여 대상 펩타이드 서열에 대한 면역활성을 정교하게 예측할 수 있는 펩타이드 신물질 탐색 방법 및 시스템에 관한 것으로서, 본 발명에 따른 펩타이드 신물질 탐색 방법은, 1) MHC 1의 알려진 에피토프(epitope) 펩타이드들 포지티브 훈련 세트로, 면역 관용이 있는 휴먼 레퍼런스(Hunan-Reference) 단백질 서열을 네거티브 훈련 세트로 하여 훈련 데이터를 수집하는 단계; 2) 상기 1) 단계에서 수집된 훈련 데이터를 사용하여 인공지능 딥러닝 기법으로 훈련 데이터와 MHC 1의 결합 여부를 학습시켜 에피토프 펩타이드 예측 모델을 확립하는 단계; 3) 에피토프 후보 펩타이드를 상기 2) 단계에서 확립된 에피토프 펩타이드 예측 모델 모델에 입력하여 상기 에피토프 후보 펩타이드와 MHC 1의 결합 여부를 예측하는 단계;를 포함한다.</description><language>eng ; kor</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221115&amp;DB=EPODOC&amp;CC=KR&amp;NR=20220151388A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221115&amp;DB=EPODOC&amp;CC=KR&amp;NR=20220151388A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHIN JAE MIN</creatorcontrib><creatorcontrib>PARK HYE JIN</creatorcontrib><creatorcontrib>TRAN HUE VY AN</creatorcontrib><creatorcontrib>KIM MIN SEOK</creatorcontrib><creatorcontrib>KIM SONG MI</creatorcontrib><title>A SYSTEM FOR SEARCHING THE NEW PEPTIDE</title><description>The present invention relates to a peptide new material search method and system that can precisely predict the immunoactivity of a target peptide sequence by learning the binding possibility of MHC 1 and an epitope peptide by an artificial intelligence deep learning method. The peptide new material search method according to the present invention comprises the steps of: 1) collecting training data using known epitope peptides of MHC 1 as a positive training set and a human-reference protein sequence having immunotolerance as a negative training set; 2) using the training data collected in step 1) to learn whether the training data and MHC 1 are combined using an artificial intelligence deep learning technique, thereby establishing an epitope peptide prediction model; and 3) inputting an epitope candidate peptide into the epitope peptide prediction model established in step 2) to predict whether the epitope candidate peptide and MHC 1 are combined. 본 발명은MHC 1 과 에피토프 펩타이드의 결합 가능성을 인공지능 딥러닝 학습법으로 학습하여 대상 펩타이드 서열에 대한 면역활성을 정교하게 예측할 수 있는 펩타이드 신물질 탐색 방법 및 시스템에 관한 것으로서, 본 발명에 따른 펩타이드 신물질 탐색 방법은, 1) MHC 1의 알려진 에피토프(epitope) 펩타이드들 포지티브 훈련 세트로, 면역 관용이 있는 휴먼 레퍼런스(Hunan-Reference) 단백질 서열을 네거티브 훈련 세트로 하여 훈련 데이터를 수집하는 단계; 2) 상기 1) 단계에서 수집된 훈련 데이터를 사용하여 인공지능 딥러닝 기법으로 훈련 데이터와 MHC 1의 결합 여부를 학습시켜 에피토프 펩타이드 예측 모델을 확립하는 단계; 3) 에피토프 후보 펩타이드를 상기 2) 단계에서 확립된 에피토프 펩타이드 예측 모델 모델에 입력하여 상기 에피토프 후보 펩타이드와 MHC 1의 결합 여부를 예측하는 단계;를 포함한다.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFBzVAiODA5x9VVw8w9SCHZ1DHL28PRzVwjxcFXwcw1XCHANCPF0ceVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfHeQUYGRkYGhqaGxhYWjsbEqQIAL6QkIA</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>SHIN JAE MIN</creator><creator>PARK HYE JIN</creator><creator>TRAN HUE VY AN</creator><creator>KIM MIN SEOK</creator><creator>KIM SONG MI</creator><scope>EVB</scope></search><sort><creationdate>20221115</creationdate><title>A SYSTEM FOR SEARCHING THE NEW PEPTIDE</title><author>SHIN JAE MIN ; PARK HYE JIN ; TRAN HUE VY AN ; KIM MIN SEOK ; KIM SONG MI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR20220151388A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHIN JAE MIN</creatorcontrib><creatorcontrib>PARK HYE JIN</creatorcontrib><creatorcontrib>TRAN HUE VY AN</creatorcontrib><creatorcontrib>KIM MIN SEOK</creatorcontrib><creatorcontrib>KIM SONG MI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHIN JAE MIN</au><au>PARK HYE JIN</au><au>TRAN HUE VY AN</au><au>KIM MIN SEOK</au><au>KIM SONG MI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A SYSTEM FOR SEARCHING THE NEW PEPTIDE</title><date>2022-11-15</date><risdate>2022</risdate><abstract>The present invention relates to a peptide new material search method and system that can precisely predict the immunoactivity of a target peptide sequence by learning the binding possibility of MHC 1 and an epitope peptide by an artificial intelligence deep learning method. The peptide new material search method according to the present invention comprises the steps of: 1) collecting training data using known epitope peptides of MHC 1 as a positive training set and a human-reference protein sequence having immunotolerance as a negative training set; 2) using the training data collected in step 1) to learn whether the training data and MHC 1 are combined using an artificial intelligence deep learning technique, thereby establishing an epitope peptide prediction model; and 3) inputting an epitope candidate peptide into the epitope peptide prediction model established in step 2) to predict whether the epitope candidate peptide and MHC 1 are combined. 본 발명은MHC 1 과 에피토프 펩타이드의 결합 가능성을 인공지능 딥러닝 학습법으로 학습하여 대상 펩타이드 서열에 대한 면역활성을 정교하게 예측할 수 있는 펩타이드 신물질 탐색 방법 및 시스템에 관한 것으로서, 본 발명에 따른 펩타이드 신물질 탐색 방법은, 1) MHC 1의 알려진 에피토프(epitope) 펩타이드들 포지티브 훈련 세트로, 면역 관용이 있는 휴먼 레퍼런스(Hunan-Reference) 단백질 서열을 네거티브 훈련 세트로 하여 훈련 데이터를 수집하는 단계; 2) 상기 1) 단계에서 수집된 훈련 데이터를 사용하여 인공지능 딥러닝 기법으로 훈련 데이터와 MHC 1의 결합 여부를 학습시켜 에피토프 펩타이드 예측 모델을 확립하는 단계; 3) 에피토프 후보 펩타이드를 상기 2) 단계에서 확립된 에피토프 펩타이드 예측 모델 모델에 입력하여 상기 에피토프 후보 펩타이드와 MHC 1의 결합 여부를 예측하는 단계;를 포함한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR20220151388A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title A SYSTEM FOR SEARCHING THE NEW PEPTIDE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHIN%20JAE%20MIN&rft.date=2022-11-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR20220151388A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true