SCHEDULING OPTIMIZATION METHOD OF VEHICLES AND DRONES USING DELIVERY POSITION CLUSTERING OF PARALLEL DELIVERY USING VEHICLES AND DRONES AND THE SYSTEM THEREOF
The present invention relates to a scheduling optimization method for a transportation means and a drone using delivery position clustering of parallel delivery using a transportation means and a drone, and a system thereof. The method comprises: a delivery preparation step of inputting location dat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; kor |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SUNG SOO KIM MIN SEOP SHIN |
description | The present invention relates to a scheduling optimization method for a transportation means and a drone using delivery position clustering of parallel delivery using a transportation means and a drone, and a system thereof. The method comprises: a delivery preparation step of inputting location data of a customer, obtaining delivery location data which can be delivered by means of a transportation means and a drone in the customer's location data, and calculating a distance from a depot to the delivery location data and a required time to travel the distance; a clustering step of clustering a plurality of pieces of delivery location data based on a relative distance ratio between the pieces of delivery location data and a distance between center points of clusters; a Routing Group Search Optimization (RGSO) scheduling step of obtaining an RGSO scheduling solution for parallel delivery of the transportation means and the drone from a drone station to the delivery location data, based on the drone station installed at the center point of each cluster; and a scheduling processing step of completing RGSO scheduling by obtaining the RGSO scheduling solution in all clusters.
본 발명은 운송 수단과 드론을 사용한 병렬 배송의 배송 위치 클러스터링을 이용한 운송 수단 및 드론의 스케줄링 최적화 방법 및 시스템에 관한 것으로서, 고객의 위치 데이터를 입력하고, 상기 고객의 위치 데이터 중에서 운송 수단 및 드론이 배송 가능한 배송 위치 데이터를 획득하며, 디포(depot)에서 상기 배송 위치 데이터까지의 거리 및 소요시간을 산출하는 택배 준비 단계, 상기 배송 위치 데이터 간의 상대적인 거리 비율과 클러스터의 중심점 간의 거리를 기반으로 복수의 배송 위치 데이터를 클러스터링하는 클러스터링 단계, 각 클러스터의 중심점에 설치된 드론 정거장을 기준으로, 상기 드론 정거장에서 상기 배송 위치 데이터까지 상기 운송 수단 및 상기 드론의 병렬 택배를 위한 RGSO(Routing Group Search Optimization) 스케줄링 해를 획득하는 RGSO 스케줄링 단계 및 모든 클러스터에서 상기 RGSO 스케줄링 해를 획득하여 RGSO 스케줄링을 완료하는 스케줄링 처리 단계를 포함한다. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR20220112357A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR20220112357A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR20220112357A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbs4iPoPD5yFNiLOIXkxwTQpSVqoSykSJ9FC_R6_1bYKLg5O9wz3nHny9EwiL7UyB7BFULk60aCsgRyDtBysgAqlYho9UMOBO2sGLP0ocNSqQldDYb2aLKZLH9BNNQEFdVRr1N_j2_tVHDFIBF8PgXxEh1Ysk9mlvfZx9dlFshYYmNzE7t7EvmvP8RYfzdGRlJA0y8h2t6fb_14vTwVFiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SCHEDULING OPTIMIZATION METHOD OF VEHICLES AND DRONES USING DELIVERY POSITION CLUSTERING OF PARALLEL DELIVERY USING VEHICLES AND DRONES AND THE SYSTEM THEREOF</title><source>esp@cenet</source><creator>SUNG SOO KIM ; MIN SEOP SHIN</creator><creatorcontrib>SUNG SOO KIM ; MIN SEOP SHIN</creatorcontrib><description>The present invention relates to a scheduling optimization method for a transportation means and a drone using delivery position clustering of parallel delivery using a transportation means and a drone, and a system thereof. The method comprises: a delivery preparation step of inputting location data of a customer, obtaining delivery location data which can be delivered by means of a transportation means and a drone in the customer's location data, and calculating a distance from a depot to the delivery location data and a required time to travel the distance; a clustering step of clustering a plurality of pieces of delivery location data based on a relative distance ratio between the pieces of delivery location data and a distance between center points of clusters; a Routing Group Search Optimization (RGSO) scheduling step of obtaining an RGSO scheduling solution for parallel delivery of the transportation means and the drone from a drone station to the delivery location data, based on the drone station installed at the center point of each cluster; and a scheduling processing step of completing RGSO scheduling by obtaining the RGSO scheduling solution in all clusters.
본 발명은 운송 수단과 드론을 사용한 병렬 배송의 배송 위치 클러스터링을 이용한 운송 수단 및 드론의 스케줄링 최적화 방법 및 시스템에 관한 것으로서, 고객의 위치 데이터를 입력하고, 상기 고객의 위치 데이터 중에서 운송 수단 및 드론이 배송 가능한 배송 위치 데이터를 획득하며, 디포(depot)에서 상기 배송 위치 데이터까지의 거리 및 소요시간을 산출하는 택배 준비 단계, 상기 배송 위치 데이터 간의 상대적인 거리 비율과 클러스터의 중심점 간의 거리를 기반으로 복수의 배송 위치 데이터를 클러스터링하는 클러스터링 단계, 각 클러스터의 중심점에 설치된 드론 정거장을 기준으로, 상기 드론 정거장에서 상기 배송 위치 데이터까지 상기 운송 수단 및 상기 드론의 병렬 택배를 위한 RGSO(Routing Group Search Optimization) 스케줄링 해를 획득하는 RGSO 스케줄링 단계 및 모든 클러스터에서 상기 RGSO 스케줄링 해를 획득하여 RGSO 스케줄링을 완료하는 스케줄링 처리 단계를 포함한다.</description><language>eng ; kor</language><subject>AEROPLANES ; AIRCRAFT ; AVIATION ; CALCULATING ; COMPUTING ; COSMONAUTICS ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HELICOPTERS ; PERFORMING OPERATIONS ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRANSPORTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220811&DB=EPODOC&CC=KR&NR=20220112357A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220811&DB=EPODOC&CC=KR&NR=20220112357A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUNG SOO KIM</creatorcontrib><creatorcontrib>MIN SEOP SHIN</creatorcontrib><title>SCHEDULING OPTIMIZATION METHOD OF VEHICLES AND DRONES USING DELIVERY POSITION CLUSTERING OF PARALLEL DELIVERY USING VEHICLES AND DRONES AND THE SYSTEM THEREOF</title><description>The present invention relates to a scheduling optimization method for a transportation means and a drone using delivery position clustering of parallel delivery using a transportation means and a drone, and a system thereof. The method comprises: a delivery preparation step of inputting location data of a customer, obtaining delivery location data which can be delivered by means of a transportation means and a drone in the customer's location data, and calculating a distance from a depot to the delivery location data and a required time to travel the distance; a clustering step of clustering a plurality of pieces of delivery location data based on a relative distance ratio between the pieces of delivery location data and a distance between center points of clusters; a Routing Group Search Optimization (RGSO) scheduling step of obtaining an RGSO scheduling solution for parallel delivery of the transportation means and the drone from a drone station to the delivery location data, based on the drone station installed at the center point of each cluster; and a scheduling processing step of completing RGSO scheduling by obtaining the RGSO scheduling solution in all clusters.
본 발명은 운송 수단과 드론을 사용한 병렬 배송의 배송 위치 클러스터링을 이용한 운송 수단 및 드론의 스케줄링 최적화 방법 및 시스템에 관한 것으로서, 고객의 위치 데이터를 입력하고, 상기 고객의 위치 데이터 중에서 운송 수단 및 드론이 배송 가능한 배송 위치 데이터를 획득하며, 디포(depot)에서 상기 배송 위치 데이터까지의 거리 및 소요시간을 산출하는 택배 준비 단계, 상기 배송 위치 데이터 간의 상대적인 거리 비율과 클러스터의 중심점 간의 거리를 기반으로 복수의 배송 위치 데이터를 클러스터링하는 클러스터링 단계, 각 클러스터의 중심점에 설치된 드론 정거장을 기준으로, 상기 드론 정거장에서 상기 배송 위치 데이터까지 상기 운송 수단 및 상기 드론의 병렬 택배를 위한 RGSO(Routing Group Search Optimization) 스케줄링 해를 획득하는 RGSO 스케줄링 단계 및 모든 클러스터에서 상기 RGSO 스케줄링 해를 획득하여 RGSO 스케줄링을 완료하는 스케줄링 처리 단계를 포함한다.</description><subject>AEROPLANES</subject><subject>AIRCRAFT</subject><subject>AVIATION</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COSMONAUTICS</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HELICOPTERS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbs4iPoPD5yFNiLOIXkxwTQpSVqoSykSJ9FC_R6_1bYKLg5O9wz3nHny9EwiL7UyB7BFULk60aCsgRyDtBysgAqlYho9UMOBO2sGLP0ocNSqQldDYb2aLKZLH9BNNQEFdVRr1N_j2_tVHDFIBF8PgXxEh1Ysk9mlvfZx9dlFshYYmNzE7t7EvmvP8RYfzdGRlJA0y8h2t6fb_14vTwVFiQ</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>SUNG SOO KIM</creator><creator>MIN SEOP SHIN</creator><scope>EVB</scope></search><sort><creationdate>20220811</creationdate><title>SCHEDULING OPTIMIZATION METHOD OF VEHICLES AND DRONES USING DELIVERY POSITION CLUSTERING OF PARALLEL DELIVERY USING VEHICLES AND DRONES AND THE SYSTEM THEREOF</title><author>SUNG SOO KIM ; MIN SEOP SHIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR20220112357A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2022</creationdate><topic>AEROPLANES</topic><topic>AIRCRAFT</topic><topic>AVIATION</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COSMONAUTICS</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HELICOPTERS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>SUNG SOO KIM</creatorcontrib><creatorcontrib>MIN SEOP SHIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUNG SOO KIM</au><au>MIN SEOP SHIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SCHEDULING OPTIMIZATION METHOD OF VEHICLES AND DRONES USING DELIVERY POSITION CLUSTERING OF PARALLEL DELIVERY USING VEHICLES AND DRONES AND THE SYSTEM THEREOF</title><date>2022-08-11</date><risdate>2022</risdate><abstract>The present invention relates to a scheduling optimization method for a transportation means and a drone using delivery position clustering of parallel delivery using a transportation means and a drone, and a system thereof. The method comprises: a delivery preparation step of inputting location data of a customer, obtaining delivery location data which can be delivered by means of a transportation means and a drone in the customer's location data, and calculating a distance from a depot to the delivery location data and a required time to travel the distance; a clustering step of clustering a plurality of pieces of delivery location data based on a relative distance ratio between the pieces of delivery location data and a distance between center points of clusters; a Routing Group Search Optimization (RGSO) scheduling step of obtaining an RGSO scheduling solution for parallel delivery of the transportation means and the drone from a drone station to the delivery location data, based on the drone station installed at the center point of each cluster; and a scheduling processing step of completing RGSO scheduling by obtaining the RGSO scheduling solution in all clusters.
본 발명은 운송 수단과 드론을 사용한 병렬 배송의 배송 위치 클러스터링을 이용한 운송 수단 및 드론의 스케줄링 최적화 방법 및 시스템에 관한 것으로서, 고객의 위치 데이터를 입력하고, 상기 고객의 위치 데이터 중에서 운송 수단 및 드론이 배송 가능한 배송 위치 데이터를 획득하며, 디포(depot)에서 상기 배송 위치 데이터까지의 거리 및 소요시간을 산출하는 택배 준비 단계, 상기 배송 위치 데이터 간의 상대적인 거리 비율과 클러스터의 중심점 간의 거리를 기반으로 복수의 배송 위치 데이터를 클러스터링하는 클러스터링 단계, 각 클러스터의 중심점에 설치된 드론 정거장을 기준으로, 상기 드론 정거장에서 상기 배송 위치 데이터까지 상기 운송 수단 및 상기 드론의 병렬 택배를 위한 RGSO(Routing Group Search Optimization) 스케줄링 해를 획득하는 RGSO 스케줄링 단계 및 모든 클러스터에서 상기 RGSO 스케줄링 해를 획득하여 RGSO 스케줄링을 완료하는 스케줄링 처리 단계를 포함한다.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; kor |
recordid | cdi_epo_espacenet_KR20220112357A |
source | esp@cenet |
subjects | AEROPLANES AIRCRAFT AVIATION CALCULATING COMPUTING COSMONAUTICS COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES HELICOPTERS PERFORMING OPERATIONS PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TRANSPORTING |
title | SCHEDULING OPTIMIZATION METHOD OF VEHICLES AND DRONES USING DELIVERY POSITION CLUSTERING OF PARALLEL DELIVERY USING VEHICLES AND DRONES AND THE SYSTEM THEREOF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUNG%20SOO%20KIM&rft.date=2022-08-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR20220112357A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |