Diagnosis apparatus of partial discharge

According to an embodiment of the present invention, provided is a partial discharge diagnosis device comprising: a sensor unit for detecting an electromagnetic wave signal generated from a power device; a pre-processing unit for generating PRPS data and PRPD data using the electromagnetic wave sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LEE JI HOON, JUN MI JEONG, YANG HUI SUNG
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LEE JI HOON
JUN MI JEONG
YANG HUI SUNG
description According to an embodiment of the present invention, provided is a partial discharge diagnosis device comprising: a sensor unit for detecting an electromagnetic wave signal generated from a power device; a pre-processing unit for generating PRPS data and PRPD data using the electromagnetic wave signal obtained from the sensor unit; a first processing unit for determining whether partial discharge has occurred by applying the generated PRPS data to a first deep learning model including a convolutional neural network (CNN) model and a recurrent neural network (RNN) model; a second processing unit for classifying partial discharge types by applying the generated PRPD data to a second deep learning model including a convolutional neural network (CNN) model; and a third processing unit for predicting a partial discharge risk according to the partial discharge occurrence determination result and the partial discharge type classification result. Accordingly, the present invention can perform partial discharge diagnosis and type classification using a deep learning model. 본 발명의 일 실시예에 따르면, 전력기기에서 발생되는 전자기파 신호를 검출하는 센서부; 상기 센서부에서 취득한 전자기파 신호를 이용하여 PRPS데이터 및 PRPD 데이터를 생성하는 전처리부; 생성된 PRPS데이터를 합성곱 신경망(CNN, Convolutional Neural Network) 및 순환신경망(RNN, Recurrent Neural Network) 모델을 포함하는 제1딥러닝 모델에 적용하여 부분방전 발생 유무를 판정하는 제1처리부; 생성된 PRPD 데이터를 합성곱신경망(CNN, Convolutional Neural Network)모델을 포함하는 제2딥러닝 모델에 적용하여 부분방전 유형을 분류하는 제2처리부; 및 상기 부분방전 발생 유무 판정 결과 및 상기 부분방전 유형 분류 결과에 따라 상기 부분방전 위험도를 예측하는 제3처리부를 포함하는 부분방전 진단 장치를 제공한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR20210046356A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR20210046356A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR20210046356A3</originalsourceid><addsrcrecordid>eNrjZNBwyUxMz8svzixWSCwoSCxKLCktVshPUwAySzITcxRSMouTMxKL0lN5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakm8d5CRgZGhgYGJmbGpmaMxcaoAfjkpQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Diagnosis apparatus of partial discharge</title><source>esp@cenet</source><creator>LEE JI HOON ; JUN MI JEONG ; YANG HUI SUNG</creator><creatorcontrib>LEE JI HOON ; JUN MI JEONG ; YANG HUI SUNG</creatorcontrib><description>According to an embodiment of the present invention, provided is a partial discharge diagnosis device comprising: a sensor unit for detecting an electromagnetic wave signal generated from a power device; a pre-processing unit for generating PRPS data and PRPD data using the electromagnetic wave signal obtained from the sensor unit; a first processing unit for determining whether partial discharge has occurred by applying the generated PRPS data to a first deep learning model including a convolutional neural network (CNN) model and a recurrent neural network (RNN) model; a second processing unit for classifying partial discharge types by applying the generated PRPD data to a second deep learning model including a convolutional neural network (CNN) model; and a third processing unit for predicting a partial discharge risk according to the partial discharge occurrence determination result and the partial discharge type classification result. Accordingly, the present invention can perform partial discharge diagnosis and type classification using a deep learning model. 본 발명의 일 실시예에 따르면, 전력기기에서 발생되는 전자기파 신호를 검출하는 센서부; 상기 센서부에서 취득한 전자기파 신호를 이용하여 PRPS데이터 및 PRPD 데이터를 생성하는 전처리부; 생성된 PRPS데이터를 합성곱 신경망(CNN, Convolutional Neural Network) 및 순환신경망(RNN, Recurrent Neural Network) 모델을 포함하는 제1딥러닝 모델에 적용하여 부분방전 발생 유무를 판정하는 제1처리부; 생성된 PRPD 데이터를 합성곱신경망(CNN, Convolutional Neural Network)모델을 포함하는 제2딥러닝 모델에 적용하여 부분방전 유형을 분류하는 제2처리부; 및 상기 부분방전 발생 유무 판정 결과 및 상기 부분방전 유형 분류 결과에 따라 상기 부분방전 위험도를 예측하는 제3처리부를 포함하는 부분방전 진단 장치를 제공한다.</description><language>eng ; kor</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210428&amp;DB=EPODOC&amp;CC=KR&amp;NR=20210046356A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210428&amp;DB=EPODOC&amp;CC=KR&amp;NR=20210046356A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LEE JI HOON</creatorcontrib><creatorcontrib>JUN MI JEONG</creatorcontrib><creatorcontrib>YANG HUI SUNG</creatorcontrib><title>Diagnosis apparatus of partial discharge</title><description>According to an embodiment of the present invention, provided is a partial discharge diagnosis device comprising: a sensor unit for detecting an electromagnetic wave signal generated from a power device; a pre-processing unit for generating PRPS data and PRPD data using the electromagnetic wave signal obtained from the sensor unit; a first processing unit for determining whether partial discharge has occurred by applying the generated PRPS data to a first deep learning model including a convolutional neural network (CNN) model and a recurrent neural network (RNN) model; a second processing unit for classifying partial discharge types by applying the generated PRPD data to a second deep learning model including a convolutional neural network (CNN) model; and a third processing unit for predicting a partial discharge risk according to the partial discharge occurrence determination result and the partial discharge type classification result. Accordingly, the present invention can perform partial discharge diagnosis and type classification using a deep learning model. 본 발명의 일 실시예에 따르면, 전력기기에서 발생되는 전자기파 신호를 검출하는 센서부; 상기 센서부에서 취득한 전자기파 신호를 이용하여 PRPS데이터 및 PRPD 데이터를 생성하는 전처리부; 생성된 PRPS데이터를 합성곱 신경망(CNN, Convolutional Neural Network) 및 순환신경망(RNN, Recurrent Neural Network) 모델을 포함하는 제1딥러닝 모델에 적용하여 부분방전 발생 유무를 판정하는 제1처리부; 생성된 PRPD 데이터를 합성곱신경망(CNN, Convolutional Neural Network)모델을 포함하는 제2딥러닝 모델에 적용하여 부분방전 유형을 분류하는 제2처리부; 및 상기 부분방전 발생 유무 판정 결과 및 상기 부분방전 유형 분류 결과에 따라 상기 부분방전 위험도를 예측하는 제3처리부를 포함하는 부분방전 진단 장치를 제공한다.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBwyUxMz8svzixWSCwoSCxKLCktVshPUwAySzITcxRSMouTMxKL0lN5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakm8d5CRgZGhgYGJmbGpmaMxcaoAfjkpQw</recordid><startdate>20210428</startdate><enddate>20210428</enddate><creator>LEE JI HOON</creator><creator>JUN MI JEONG</creator><creator>YANG HUI SUNG</creator><scope>EVB</scope></search><sort><creationdate>20210428</creationdate><title>Diagnosis apparatus of partial discharge</title><author>LEE JI HOON ; JUN MI JEONG ; YANG HUI SUNG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR20210046356A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LEE JI HOON</creatorcontrib><creatorcontrib>JUN MI JEONG</creatorcontrib><creatorcontrib>YANG HUI SUNG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LEE JI HOON</au><au>JUN MI JEONG</au><au>YANG HUI SUNG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Diagnosis apparatus of partial discharge</title><date>2021-04-28</date><risdate>2021</risdate><abstract>According to an embodiment of the present invention, provided is a partial discharge diagnosis device comprising: a sensor unit for detecting an electromagnetic wave signal generated from a power device; a pre-processing unit for generating PRPS data and PRPD data using the electromagnetic wave signal obtained from the sensor unit; a first processing unit for determining whether partial discharge has occurred by applying the generated PRPS data to a first deep learning model including a convolutional neural network (CNN) model and a recurrent neural network (RNN) model; a second processing unit for classifying partial discharge types by applying the generated PRPD data to a second deep learning model including a convolutional neural network (CNN) model; and a third processing unit for predicting a partial discharge risk according to the partial discharge occurrence determination result and the partial discharge type classification result. Accordingly, the present invention can perform partial discharge diagnosis and type classification using a deep learning model. 본 발명의 일 실시예에 따르면, 전력기기에서 발생되는 전자기파 신호를 검출하는 센서부; 상기 센서부에서 취득한 전자기파 신호를 이용하여 PRPS데이터 및 PRPD 데이터를 생성하는 전처리부; 생성된 PRPS데이터를 합성곱 신경망(CNN, Convolutional Neural Network) 및 순환신경망(RNN, Recurrent Neural Network) 모델을 포함하는 제1딥러닝 모델에 적용하여 부분방전 발생 유무를 판정하는 제1처리부; 생성된 PRPD 데이터를 합성곱신경망(CNN, Convolutional Neural Network)모델을 포함하는 제2딥러닝 모델에 적용하여 부분방전 유형을 분류하는 제2처리부; 및 상기 부분방전 발생 유무 판정 결과 및 상기 부분방전 유형 분류 결과에 따라 상기 부분방전 위험도를 예측하는 제3처리부를 포함하는 부분방전 진단 장치를 제공한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR20210046356A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Diagnosis apparatus of partial discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LEE%20JI%20HOON&rft.date=2021-04-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR20210046356A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true