A RECURRENT NEURAL NETWORK AND A SYSTEM TO PREDICT BLOOD GLUCOSE LEVEL

Provided is a recurrent neural network (RNN) for predicting a blood sugar level. The RNN comprises: a first long short-term memory (LSTM) network including input and output for receiving near-infrared radiation (NIR) data; and a second LSTM network including input for receiving the output of the fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU LIU, GEORGIADIS GEORGIOS, DENG WEIRAN, SAKHAEE ELHAM
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU LIU
GEORGIADIS GEORGIOS
DENG WEIRAN
SAKHAEE ELHAM
description Provided is a recurrent neural network (RNN) for predicting a blood sugar level. The RNN comprises: a first long short-term memory (LSTM) network including input and output for receiving near-infrared radiation (NIR) data; and a second LSTM network including input for receiving the output of the first LSTM network and output for outputting a blood sugar level based on the NIR data input to the first LSTM network. 혈당 수준을 예측하는 순환 신경망(RNN)이 제공된다. 상기 순환 신경망(RNN)은 근적외선(NIR) 방사선 데이터를 수신하는 입력과 출력을 포함하는 제1 롱 숏텀 메모리(Long Short-Term Memory, LSTM) 네트워크, 상기 제1 LSTM 네트워크의 출력을 수신하는 입력과 상기 제1 LSTM 네트워크에 입력되는 근적외선 방사선 데이터를 근거하여 혈당 수준을 출력하는 출력을 포함하는 제2 LSTM 네트워크를 포함한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR20200110606A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR20200110606A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR20200110606A3</originalsourceid><addsrcrecordid>eNrjZHBzVAhydQ4NCnL1C1Hwcw0NcvQBUiHh_kHeCo5-LgqOCsGRwSGuvgoh_goBQa4uns4hCk4-_v4uCu4-oc7-wa4KPq5hrj48DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSTeO8jIwMjAwNDQwMzAzNGYOFUAQpws2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A RECURRENT NEURAL NETWORK AND A SYSTEM TO PREDICT BLOOD GLUCOSE LEVEL</title><source>esp@cenet</source><creator>LIU LIU ; GEORGIADIS GEORGIOS ; DENG WEIRAN ; SAKHAEE ELHAM</creator><creatorcontrib>LIU LIU ; GEORGIADIS GEORGIOS ; DENG WEIRAN ; SAKHAEE ELHAM</creatorcontrib><description>Provided is a recurrent neural network (RNN) for predicting a blood sugar level. The RNN comprises: a first long short-term memory (LSTM) network including input and output for receiving near-infrared radiation (NIR) data; and a second LSTM network including input for receiving the output of the first LSTM network and output for outputting a blood sugar level based on the NIR data input to the first LSTM network. 혈당 수준을 예측하는 순환 신경망(RNN)이 제공된다. 상기 순환 신경망(RNN)은 근적외선(NIR) 방사선 데이터를 수신하는 입력과 출력을 포함하는 제1 롱 숏텀 메모리(Long Short-Term Memory, LSTM) 네트워크, 상기 제1 LSTM 네트워크의 출력을 수신하는 입력과 상기 제1 LSTM 네트워크에 입력되는 근적외선 방사선 데이터를 근거하여 혈당 수준을 출력하는 출력을 포함하는 제2 LSTM 네트워크를 포함한다.</description><language>eng ; kor</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200924&amp;DB=EPODOC&amp;CC=KR&amp;NR=20200110606A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200924&amp;DB=EPODOC&amp;CC=KR&amp;NR=20200110606A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU LIU</creatorcontrib><creatorcontrib>GEORGIADIS GEORGIOS</creatorcontrib><creatorcontrib>DENG WEIRAN</creatorcontrib><creatorcontrib>SAKHAEE ELHAM</creatorcontrib><title>A RECURRENT NEURAL NETWORK AND A SYSTEM TO PREDICT BLOOD GLUCOSE LEVEL</title><description>Provided is a recurrent neural network (RNN) for predicting a blood sugar level. The RNN comprises: a first long short-term memory (LSTM) network including input and output for receiving near-infrared radiation (NIR) data; and a second LSTM network including input for receiving the output of the first LSTM network and output for outputting a blood sugar level based on the NIR data input to the first LSTM network. 혈당 수준을 예측하는 순환 신경망(RNN)이 제공된다. 상기 순환 신경망(RNN)은 근적외선(NIR) 방사선 데이터를 수신하는 입력과 출력을 포함하는 제1 롱 숏텀 메모리(Long Short-Term Memory, LSTM) 네트워크, 상기 제1 LSTM 네트워크의 출력을 수신하는 입력과 상기 제1 LSTM 네트워크에 입력되는 근적외선 방사선 데이터를 근거하여 혈당 수준을 출력하는 출력을 포함하는 제2 LSTM 네트워크를 포함한다.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzVAhydQ4NCnL1C1Hwcw0NcvQBUiHh_kHeCo5-LgqOCsGRwSGuvgoh_goBQa4uns4hCk4-_v4uCu4-oc7-wa4KPq5hrj48DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSTeO8jIwMjAwNDQwMzAzNGYOFUAQpws2g</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>LIU LIU</creator><creator>GEORGIADIS GEORGIOS</creator><creator>DENG WEIRAN</creator><creator>SAKHAEE ELHAM</creator><scope>EVB</scope></search><sort><creationdate>20200924</creationdate><title>A RECURRENT NEURAL NETWORK AND A SYSTEM TO PREDICT BLOOD GLUCOSE LEVEL</title><author>LIU LIU ; GEORGIADIS GEORGIOS ; DENG WEIRAN ; SAKHAEE ELHAM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR20200110606A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU LIU</creatorcontrib><creatorcontrib>GEORGIADIS GEORGIOS</creatorcontrib><creatorcontrib>DENG WEIRAN</creatorcontrib><creatorcontrib>SAKHAEE ELHAM</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU LIU</au><au>GEORGIADIS GEORGIOS</au><au>DENG WEIRAN</au><au>SAKHAEE ELHAM</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A RECURRENT NEURAL NETWORK AND A SYSTEM TO PREDICT BLOOD GLUCOSE LEVEL</title><date>2020-09-24</date><risdate>2020</risdate><abstract>Provided is a recurrent neural network (RNN) for predicting a blood sugar level. The RNN comprises: a first long short-term memory (LSTM) network including input and output for receiving near-infrared radiation (NIR) data; and a second LSTM network including input for receiving the output of the first LSTM network and output for outputting a blood sugar level based on the NIR data input to the first LSTM network. 혈당 수준을 예측하는 순환 신경망(RNN)이 제공된다. 상기 순환 신경망(RNN)은 근적외선(NIR) 방사선 데이터를 수신하는 입력과 출력을 포함하는 제1 롱 숏텀 메모리(Long Short-Term Memory, LSTM) 네트워크, 상기 제1 LSTM 네트워크의 출력을 수신하는 입력과 상기 제1 LSTM 네트워크에 입력되는 근적외선 방사선 데이터를 근거하여 혈당 수준을 출력하는 출력을 포함하는 제2 LSTM 네트워크를 포함한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR20200110606A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title A RECURRENT NEURAL NETWORK AND A SYSTEM TO PREDICT BLOOD GLUCOSE LEVEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20LIU&rft.date=2020-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR20200110606A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true