METHOD FOR CLASSIFYING TYPE OF HEARTBEAT AND APPARATUS USING THE SAME

A method for classifying types of heartbeat comprises the steps of: acquiring a dataset including a plurality of heartbeat waveform data pieces; generating input data on a heartbeat waveform for training from the dataset and generating a training model in which the generated input data is set to an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ALI SELLAMI, HWANG HEA SOO
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ALI SELLAMI
HWANG HEA SOO
description A method for classifying types of heartbeat comprises the steps of: acquiring a dataset including a plurality of heartbeat waveform data pieces; generating input data on a heartbeat waveform for training from the dataset and generating a training model in which the generated input data is set to an input and heartbeat types of the heartbeat waveform for training are set to an output; determining a loss weighting factor for each batch sampled from the dataset and determining a loss function based on the loss weighting factor for each batch to train the training model; and inputting a heartbeat waveform for testing into the training model to classify the heartbeat types of the heartbeat waveform for testing. The present invention can train the training model to minimize an imbalance problem of the dataset between classes. 심장 박동 타입 분류 방법은 복수의 심박 파형 데이터를 포함하는 데이터셋을 획득하는 단계, 상기 데이터셋으로부터 학습용 심박 파형에 관한 입력 데이터를 생성하고, 상기 생성된 입력 데이터를 입력으로 하고 상기 학습용 심박 파형의 심장 박동의 타입을 출력으로 하는 학습 모델을 생성하는 단계, 상기 데이터셋으로부터 샘플링된 각 배치(batch)에 대한 손실 가중치를 결정하고, 상기 각 배치에 대한 손실 가중치에 기초하여 손실 함수를 결정함으로써 상기 학습 모델을 학습시키는 단계 및 검사용 심박 파형을 상기 학습 모델에 입력하여 상기 검사용 심박 파형의 심장 박동의 타입을 분류하는 단계를 포함한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR20200109754A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR20200109754A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR20200109754A3</originalsourceid><addsrcrecordid>eNrjZHD1dQ3x8HdRcPMPUnD2cQwO9nSL9PRzVwiJDHBV8HdT8HB1DApxcnUMUXD0c1FwDAhwDHIMCQ1WCA0Gq_JwVQh29HXlYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXx3kFGBkYGBoYGluamJo7GxKkCABUbLKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD FOR CLASSIFYING TYPE OF HEARTBEAT AND APPARATUS USING THE SAME</title><source>esp@cenet</source><creator>ALI SELLAMI ; HWANG HEA SOO</creator><creatorcontrib>ALI SELLAMI ; HWANG HEA SOO</creatorcontrib><description>A method for classifying types of heartbeat comprises the steps of: acquiring a dataset including a plurality of heartbeat waveform data pieces; generating input data on a heartbeat waveform for training from the dataset and generating a training model in which the generated input data is set to an input and heartbeat types of the heartbeat waveform for training are set to an output; determining a loss weighting factor for each batch sampled from the dataset and determining a loss function based on the loss weighting factor for each batch to train the training model; and inputting a heartbeat waveform for testing into the training model to classify the heartbeat types of the heartbeat waveform for testing. The present invention can train the training model to minimize an imbalance problem of the dataset between classes. 심장 박동 타입 분류 방법은 복수의 심박 파형 데이터를 포함하는 데이터셋을 획득하는 단계, 상기 데이터셋으로부터 학습용 심박 파형에 관한 입력 데이터를 생성하고, 상기 생성된 입력 데이터를 입력으로 하고 상기 학습용 심박 파형의 심장 박동의 타입을 출력으로 하는 학습 모델을 생성하는 단계, 상기 데이터셋으로부터 샘플링된 각 배치(batch)에 대한 손실 가중치를 결정하고, 상기 각 배치에 대한 손실 가중치에 기초하여 손실 함수를 결정함으로써 상기 학습 모델을 학습시키는 단계 및 검사용 심박 파형을 상기 학습 모델에 입력하여 상기 검사용 심박 파형의 심장 박동의 타입을 분류하는 단계를 포함한다.</description><language>eng ; kor</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200923&amp;DB=EPODOC&amp;CC=KR&amp;NR=20200109754A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200923&amp;DB=EPODOC&amp;CC=KR&amp;NR=20200109754A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ALI SELLAMI</creatorcontrib><creatorcontrib>HWANG HEA SOO</creatorcontrib><title>METHOD FOR CLASSIFYING TYPE OF HEARTBEAT AND APPARATUS USING THE SAME</title><description>A method for classifying types of heartbeat comprises the steps of: acquiring a dataset including a plurality of heartbeat waveform data pieces; generating input data on a heartbeat waveform for training from the dataset and generating a training model in which the generated input data is set to an input and heartbeat types of the heartbeat waveform for training are set to an output; determining a loss weighting factor for each batch sampled from the dataset and determining a loss function based on the loss weighting factor for each batch to train the training model; and inputting a heartbeat waveform for testing into the training model to classify the heartbeat types of the heartbeat waveform for testing. The present invention can train the training model to minimize an imbalance problem of the dataset between classes. 심장 박동 타입 분류 방법은 복수의 심박 파형 데이터를 포함하는 데이터셋을 획득하는 단계, 상기 데이터셋으로부터 학습용 심박 파형에 관한 입력 데이터를 생성하고, 상기 생성된 입력 데이터를 입력으로 하고 상기 학습용 심박 파형의 심장 박동의 타입을 출력으로 하는 학습 모델을 생성하는 단계, 상기 데이터셋으로부터 샘플링된 각 배치(batch)에 대한 손실 가중치를 결정하고, 상기 각 배치에 대한 손실 가중치에 기초하여 손실 함수를 결정함으로써 상기 학습 모델을 학습시키는 단계 및 검사용 심박 파형을 상기 학습 모델에 입력하여 상기 검사용 심박 파형의 심장 박동의 타입을 분류하는 단계를 포함한다.</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1dQ3x8HdRcPMPUnD2cQwO9nSL9PRzVwiJDHBV8HdT8HB1DApxcnUMUXD0c1FwDAhwDHIMCQ1WCA0Gq_JwVQh29HXlYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXx3kFGBkYGBoYGluamJo7GxKkCABUbLKA</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>ALI SELLAMI</creator><creator>HWANG HEA SOO</creator><scope>EVB</scope></search><sort><creationdate>20200923</creationdate><title>METHOD FOR CLASSIFYING TYPE OF HEARTBEAT AND APPARATUS USING THE SAME</title><author>ALI SELLAMI ; HWANG HEA SOO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR20200109754A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2020</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>ALI SELLAMI</creatorcontrib><creatorcontrib>HWANG HEA SOO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ALI SELLAMI</au><au>HWANG HEA SOO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD FOR CLASSIFYING TYPE OF HEARTBEAT AND APPARATUS USING THE SAME</title><date>2020-09-23</date><risdate>2020</risdate><abstract>A method for classifying types of heartbeat comprises the steps of: acquiring a dataset including a plurality of heartbeat waveform data pieces; generating input data on a heartbeat waveform for training from the dataset and generating a training model in which the generated input data is set to an input and heartbeat types of the heartbeat waveform for training are set to an output; determining a loss weighting factor for each batch sampled from the dataset and determining a loss function based on the loss weighting factor for each batch to train the training model; and inputting a heartbeat waveform for testing into the training model to classify the heartbeat types of the heartbeat waveform for testing. The present invention can train the training model to minimize an imbalance problem of the dataset between classes. 심장 박동 타입 분류 방법은 복수의 심박 파형 데이터를 포함하는 데이터셋을 획득하는 단계, 상기 데이터셋으로부터 학습용 심박 파형에 관한 입력 데이터를 생성하고, 상기 생성된 입력 데이터를 입력으로 하고 상기 학습용 심박 파형의 심장 박동의 타입을 출력으로 하는 학습 모델을 생성하는 단계, 상기 데이터셋으로부터 샘플링된 각 배치(batch)에 대한 손실 가중치를 결정하고, 상기 각 배치에 대한 손실 가중치에 기초하여 손실 함수를 결정함으로써 상기 학습 모델을 학습시키는 단계 및 검사용 심박 파형을 상기 학습 모델에 입력하여 상기 검사용 심박 파형의 심장 박동의 타입을 분류하는 단계를 포함한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR20200109754A
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title METHOD FOR CLASSIFYING TYPE OF HEARTBEAT AND APPARATUS USING THE SAME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ALI%20SELLAMI&rft.date=2020-09-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR20200109754A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true