3D 3 APPARATUS AND METHOD FOR 3-DIMENSIONAL ORAL SCAN DATA REGISTRATION USING DEEP LEARNING-BASED 3D KEY POINTS DETECTION

Disclosed is an apparatus for matching three-dimensional (3D) oral scan data, which includes a matching unit, a deep learning unit, a scan frame feature point determination unit, and a scan data rematching unit. The matching unit matches a plurality of scanned frames to generate a full jaw image. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JUNG HONG, SONG BO HYUN, LEE SUNG MIN
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JUNG HONG
SONG BO HYUN
LEE SUNG MIN
description Disclosed is an apparatus for matching three-dimensional (3D) oral scan data, which includes a matching unit, a deep learning unit, a scan frame feature point determination unit, and a scan data rematching unit. The matching unit matches a plurality of scanned frames to generate a full jaw image. The deep learning unit detects feature points of the full jaw image by performing deep learning. The scan frame feature point determination unit determines feature points of the plurality of scanned frames by using the feature points of the full jaw image. The scan data rematching unit rematches the plurality of scanned frames based on the feature points of the plurality of scanned frames to restore a 3D oral model. 정합부, 딥러닝부, 스캔 프레임 특징점 결정부, 및 스캔 데이터 재정합부를 포함하는 3차원 구강 스캔 데이터 정합 장치가 개시된다. 정합부는 복수의 스캐닝된 프레임을 정합하여 전악 이미지를 생성한다. 딥러닝부는 딥러닝을 수행하여 상기 전악 이미지의 특징점을 탐지한다. 스캔 프레임 특징점 결정부는 상기 전악 이미지의 특징점을 이용하여 상기 복수의 스캐닝된 프레임의 특징점을 결정한다. 스캔 데이터 재정합부는 상기 복수의 스캐닝된 프레임의 특징점에 기초하여 상기 복수의 스캐닝된 프레임을 재정합하여 3차원 구강 모델을 복원한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR102310662BB1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR102310662BB1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR102310662BB13</originalsourceid><addsrcrecordid>eNqNjDELgzAUhF06lLb_4UFnQQ24P81Tg5qE5Dl0EinpVFrBLv33TaE_oMsdx313--QtJAhAa9EhTx5QSxiJOyOhMQ5EKtVI2iujcQDjovgaNUhkBEet8hx3sYXJK92CJLIwEDodU1qhp3gvoacLWKM0-0gw1d_FMdndlvsWTj8_JOeGuO7SsD7nsK3LNTzCa-5dnhUiz8qyqKpc_Ed9AA5rOjs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>3D 3 APPARATUS AND METHOD FOR 3-DIMENSIONAL ORAL SCAN DATA REGISTRATION USING DEEP LEARNING-BASED 3D KEY POINTS DETECTION</title><source>esp@cenet</source><creator>JUNG HONG ; SONG BO HYUN ; LEE SUNG MIN</creator><creatorcontrib>JUNG HONG ; SONG BO HYUN ; LEE SUNG MIN</creatorcontrib><description>Disclosed is an apparatus for matching three-dimensional (3D) oral scan data, which includes a matching unit, a deep learning unit, a scan frame feature point determination unit, and a scan data rematching unit. The matching unit matches a plurality of scanned frames to generate a full jaw image. The deep learning unit detects feature points of the full jaw image by performing deep learning. The scan frame feature point determination unit determines feature points of the plurality of scanned frames by using the feature points of the full jaw image. The scan data rematching unit rematches the plurality of scanned frames based on the feature points of the plurality of scanned frames to restore a 3D oral model. 정합부, 딥러닝부, 스캔 프레임 특징점 결정부, 및 스캔 데이터 재정합부를 포함하는 3차원 구강 스캔 데이터 정합 장치가 개시된다. 정합부는 복수의 스캐닝된 프레임을 정합하여 전악 이미지를 생성한다. 딥러닝부는 딥러닝을 수행하여 상기 전악 이미지의 특징점을 탐지한다. 스캔 프레임 특징점 결정부는 상기 전악 이미지의 특징점을 이용하여 상기 복수의 스캐닝된 프레임의 특징점을 결정한다. 스캔 데이터 재정합부는 상기 복수의 스캐닝된 프레임의 특징점에 기초하여 상기 복수의 스캐닝된 프레임을 재정합하여 3차원 구강 모델을 복원한다.</description><language>eng ; kor</language><subject>APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE ; DENTISTRY ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211012&amp;DB=EPODOC&amp;CC=KR&amp;NR=102310662B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211012&amp;DB=EPODOC&amp;CC=KR&amp;NR=102310662B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JUNG HONG</creatorcontrib><creatorcontrib>SONG BO HYUN</creatorcontrib><creatorcontrib>LEE SUNG MIN</creatorcontrib><title>3D 3 APPARATUS AND METHOD FOR 3-DIMENSIONAL ORAL SCAN DATA REGISTRATION USING DEEP LEARNING-BASED 3D KEY POINTS DETECTION</title><description>Disclosed is an apparatus for matching three-dimensional (3D) oral scan data, which includes a matching unit, a deep learning unit, a scan frame feature point determination unit, and a scan data rematching unit. The matching unit matches a plurality of scanned frames to generate a full jaw image. The deep learning unit detects feature points of the full jaw image by performing deep learning. The scan frame feature point determination unit determines feature points of the plurality of scanned frames by using the feature points of the full jaw image. The scan data rematching unit rematches the plurality of scanned frames based on the feature points of the plurality of scanned frames to restore a 3D oral model. 정합부, 딥러닝부, 스캔 프레임 특징점 결정부, 및 스캔 데이터 재정합부를 포함하는 3차원 구강 스캔 데이터 정합 장치가 개시된다. 정합부는 복수의 스캐닝된 프레임을 정합하여 전악 이미지를 생성한다. 딥러닝부는 딥러닝을 수행하여 상기 전악 이미지의 특징점을 탐지한다. 스캔 프레임 특징점 결정부는 상기 전악 이미지의 특징점을 이용하여 상기 복수의 스캐닝된 프레임의 특징점을 결정한다. 스캔 데이터 재정합부는 상기 복수의 스캐닝된 프레임의 특징점에 기초하여 상기 복수의 스캐닝된 프레임을 재정합하여 3차원 구강 모델을 복원한다.</description><subject>APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE</subject><subject>DENTISTRY</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDELgzAUhF06lLb_4UFnQQ24P81Tg5qE5Dl0EinpVFrBLv33TaE_oMsdx313--QtJAhAa9EhTx5QSxiJOyOhMQ5EKtVI2iujcQDjovgaNUhkBEet8hx3sYXJK92CJLIwEDodU1qhp3gvoacLWKM0-0gw1d_FMdndlvsWTj8_JOeGuO7SsD7nsK3LNTzCa-5dnhUiz8qyqKpc_Ed9AA5rOjs</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>JUNG HONG</creator><creator>SONG BO HYUN</creator><creator>LEE SUNG MIN</creator><scope>EVB</scope></search><sort><creationdate>20211012</creationdate><title>3D 3 APPARATUS AND METHOD FOR 3-DIMENSIONAL ORAL SCAN DATA REGISTRATION USING DEEP LEARNING-BASED 3D KEY POINTS DETECTION</title><author>JUNG HONG ; SONG BO HYUN ; LEE SUNG MIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR102310662BB13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2021</creationdate><topic>APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE</topic><topic>DENTISTRY</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>JUNG HONG</creatorcontrib><creatorcontrib>SONG BO HYUN</creatorcontrib><creatorcontrib>LEE SUNG MIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JUNG HONG</au><au>SONG BO HYUN</au><au>LEE SUNG MIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>3D 3 APPARATUS AND METHOD FOR 3-DIMENSIONAL ORAL SCAN DATA REGISTRATION USING DEEP LEARNING-BASED 3D KEY POINTS DETECTION</title><date>2021-10-12</date><risdate>2021</risdate><abstract>Disclosed is an apparatus for matching three-dimensional (3D) oral scan data, which includes a matching unit, a deep learning unit, a scan frame feature point determination unit, and a scan data rematching unit. The matching unit matches a plurality of scanned frames to generate a full jaw image. The deep learning unit detects feature points of the full jaw image by performing deep learning. The scan frame feature point determination unit determines feature points of the plurality of scanned frames by using the feature points of the full jaw image. The scan data rematching unit rematches the plurality of scanned frames based on the feature points of the plurality of scanned frames to restore a 3D oral model. 정합부, 딥러닝부, 스캔 프레임 특징점 결정부, 및 스캔 데이터 재정합부를 포함하는 3차원 구강 스캔 데이터 정합 장치가 개시된다. 정합부는 복수의 스캐닝된 프레임을 정합하여 전악 이미지를 생성한다. 딥러닝부는 딥러닝을 수행하여 상기 전악 이미지의 특징점을 탐지한다. 스캔 프레임 특징점 결정부는 상기 전악 이미지의 특징점을 이용하여 상기 복수의 스캐닝된 프레임의 특징점을 결정한다. 스캔 데이터 재정합부는 상기 복수의 스캐닝된 프레임의 특징점에 기초하여 상기 복수의 스캐닝된 프레임을 재정합하여 3차원 구강 모델을 복원한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR102310662BB1
source esp@cenet
subjects APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
DENTISTRY
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title 3D 3 APPARATUS AND METHOD FOR 3-DIMENSIONAL ORAL SCAN DATA REGISTRATION USING DEEP LEARNING-BASED 3D KEY POINTS DETECTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JUNG%20HONG&rft.date=2021-10-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR102310662BB1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true