OBJECT DETECTION APPARATUS BASED ON NEURAL NETWORK LEARNING AND METHOD OF THE SAME

Provided are an apparatus for detecting an object based on neural network learning and a method thereof which can effectively learn learning data for deep learning. To this end, the apparatus for detecting an object based on neural network learning comprises: a plurality of lidar units wherein a par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUHYUNG KIM, HYEONGJUN JANG, YUSNAG PARK, YUNSUNG NOH, JAENAM YU, KIHONG PARK, TAEWON AHN, JUHYEOK RA
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUHYUNG KIM
HYEONGJUN JANG
YUSNAG PARK
YUNSUNG NOH
JAENAM YU
KIHONG PARK
TAEWON AHN
JUHYEOK RA
description Provided are an apparatus for detecting an object based on neural network learning and a method thereof which can effectively learn learning data for deep learning. To this end, the apparatus for detecting an object based on neural network learning comprises: a plurality of lidar units wherein a part of the lidar units collects first plane data by scanning a front object in a first direction and another part of the lidar units collects second plane data by scanning the front object in a second direction; and a neural network learning unit for performing neural network learning for the front object based on the first plane data and the second plane data. 신경망 학습 기반의 객체 검출 장치는 전방 객체에 관해 일부는 제1 방향으로 스캐닝을 수행하여 제1 평면 데이터를 수집하고 다른 일부는 제2 방향으로 스캐닝을 수행하여 제2 평면 데이터를 수집하는 복수의 라이다부들 및 상기 제1 및 제2 평면 데이터들을 기초로 상기 전방 객체에 관한 신경망 학습을 수행하는 신경망 학습부를 포함한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR101964100BB1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR101964100BB1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR101964100BB13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w0FnIUERHC_N1dS2SUmuOJYicRIt1PfHDD6A0wc__1oEr69UMhjiTO0dYN9jQB4iaIxkICdHQ8A2wzcfGmgJg6vdBdAZ6Iitz1cFbAkidrQVq8f0XNLu50YUFXFp92l-j2mZp3t6pc_YBCXV-XRUUmqtDv9dX2NLMB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OBJECT DETECTION APPARATUS BASED ON NEURAL NETWORK LEARNING AND METHOD OF THE SAME</title><source>esp@cenet</source><creator>SUHYUNG KIM ; HYEONGJUN JANG ; YUSNAG PARK ; YUNSUNG NOH ; JAENAM YU ; KIHONG PARK ; TAEWON AHN ; JUHYEOK RA</creator><creatorcontrib>SUHYUNG KIM ; HYEONGJUN JANG ; YUSNAG PARK ; YUNSUNG NOH ; JAENAM YU ; KIHONG PARK ; TAEWON AHN ; JUHYEOK RA</creatorcontrib><description>Provided are an apparatus for detecting an object based on neural network learning and a method thereof which can effectively learn learning data for deep learning. To this end, the apparatus for detecting an object based on neural network learning comprises: a plurality of lidar units wherein a part of the lidar units collects first plane data by scanning a front object in a first direction and another part of the lidar units collects second plane data by scanning the front object in a second direction; and a neural network learning unit for performing neural network learning for the front object based on the first plane data and the second plane data. 신경망 학습 기반의 객체 검출 장치는 전방 객체에 관해 일부는 제1 방향으로 스캐닝을 수행하여 제1 평면 데이터를 수집하고 다른 일부는 제2 방향으로 스캐닝을 수행하여 제2 평면 데이터를 수집하는 복수의 라이다부들 및 상기 제1 및 제2 평면 데이터들을 기초로 상기 전방 객체에 관한 신경망 학습을 수행하는 신경망 학습부를 포함한다.</description><language>eng ; kor</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190401&amp;DB=EPODOC&amp;CC=KR&amp;NR=101964100B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190401&amp;DB=EPODOC&amp;CC=KR&amp;NR=101964100B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUHYUNG KIM</creatorcontrib><creatorcontrib>HYEONGJUN JANG</creatorcontrib><creatorcontrib>YUSNAG PARK</creatorcontrib><creatorcontrib>YUNSUNG NOH</creatorcontrib><creatorcontrib>JAENAM YU</creatorcontrib><creatorcontrib>KIHONG PARK</creatorcontrib><creatorcontrib>TAEWON AHN</creatorcontrib><creatorcontrib>JUHYEOK RA</creatorcontrib><title>OBJECT DETECTION APPARATUS BASED ON NEURAL NETWORK LEARNING AND METHOD OF THE SAME</title><description>Provided are an apparatus for detecting an object based on neural network learning and a method thereof which can effectively learn learning data for deep learning. To this end, the apparatus for detecting an object based on neural network learning comprises: a plurality of lidar units wherein a part of the lidar units collects first plane data by scanning a front object in a first direction and another part of the lidar units collects second plane data by scanning the front object in a second direction; and a neural network learning unit for performing neural network learning for the front object based on the first plane data and the second plane data. 신경망 학습 기반의 객체 검출 장치는 전방 객체에 관해 일부는 제1 방향으로 스캐닝을 수행하여 제1 평면 데이터를 수집하고 다른 일부는 제2 방향으로 스캐닝을 수행하여 제2 평면 데이터를 수집하는 복수의 라이다부들 및 상기 제1 및 제2 평면 데이터들을 기초로 상기 전방 객체에 관한 신경망 학습을 수행하는 신경망 학습부를 포함한다.</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w0FnIUERHC_N1dS2SUmuOJYicRIt1PfHDD6A0wc__1oEr69UMhjiTO0dYN9jQB4iaIxkICdHQ8A2wzcfGmgJg6vdBdAZ6Iitz1cFbAkidrQVq8f0XNLu50YUFXFp92l-j2mZp3t6pc_YBCXV-XRUUmqtDv9dX2NLMB0</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>SUHYUNG KIM</creator><creator>HYEONGJUN JANG</creator><creator>YUSNAG PARK</creator><creator>YUNSUNG NOH</creator><creator>JAENAM YU</creator><creator>KIHONG PARK</creator><creator>TAEWON AHN</creator><creator>JUHYEOK RA</creator><scope>EVB</scope></search><sort><creationdate>20190401</creationdate><title>OBJECT DETECTION APPARATUS BASED ON NEURAL NETWORK LEARNING AND METHOD OF THE SAME</title><author>SUHYUNG KIM ; HYEONGJUN JANG ; YUSNAG PARK ; YUNSUNG NOH ; JAENAM YU ; KIHONG PARK ; TAEWON AHN ; JUHYEOK RA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR101964100BB13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2019</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>SUHYUNG KIM</creatorcontrib><creatorcontrib>HYEONGJUN JANG</creatorcontrib><creatorcontrib>YUSNAG PARK</creatorcontrib><creatorcontrib>YUNSUNG NOH</creatorcontrib><creatorcontrib>JAENAM YU</creatorcontrib><creatorcontrib>KIHONG PARK</creatorcontrib><creatorcontrib>TAEWON AHN</creatorcontrib><creatorcontrib>JUHYEOK RA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUHYUNG KIM</au><au>HYEONGJUN JANG</au><au>YUSNAG PARK</au><au>YUNSUNG NOH</au><au>JAENAM YU</au><au>KIHONG PARK</au><au>TAEWON AHN</au><au>JUHYEOK RA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OBJECT DETECTION APPARATUS BASED ON NEURAL NETWORK LEARNING AND METHOD OF THE SAME</title><date>2019-04-01</date><risdate>2019</risdate><abstract>Provided are an apparatus for detecting an object based on neural network learning and a method thereof which can effectively learn learning data for deep learning. To this end, the apparatus for detecting an object based on neural network learning comprises: a plurality of lidar units wherein a part of the lidar units collects first plane data by scanning a front object in a first direction and another part of the lidar units collects second plane data by scanning the front object in a second direction; and a neural network learning unit for performing neural network learning for the front object based on the first plane data and the second plane data. 신경망 학습 기반의 객체 검출 장치는 전방 객체에 관해 일부는 제1 방향으로 스캐닝을 수행하여 제1 평면 데이터를 수집하고 다른 일부는 제2 방향으로 스캐닝을 수행하여 제2 평면 데이터를 수집하는 복수의 라이다부들 및 상기 제1 및 제2 평면 데이터들을 기초로 상기 전방 객체에 관한 신경망 학습을 수행하는 신경망 학습부를 포함한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR101964100BB1
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
CALCULATING
COMPUTING
COUNTING
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
PHYSICS
PRESENTATION OF DATA
RADIO DIRECTION-FINDING
RADIO NAVIGATION
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title OBJECT DETECTION APPARATUS BASED ON NEURAL NETWORK LEARNING AND METHOD OF THE SAME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUHYUNG%20KIM&rft.date=2019-04-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR101964100BB1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true