METHOD OF PRODUCING CERAMIC MATRIX COMPOSITES
To provide ceramic matrix composites that have a higher specific modulus relative to silicon carbide and enable the molding of an article of a complex shape.SOLUTION: A method of producing ceramic matrix composites includes a mixing step, a molding step, a heat treatment step, an infiltration step,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KUME MASASANE |
description | To provide ceramic matrix composites that have a higher specific modulus relative to silicon carbide and enable the molding of an article of a complex shape.SOLUTION: A method of producing ceramic matrix composites includes a mixing step, a molding step, a heat treatment step, an infiltration step, and a reactive sintering step. In the mixing step, boron carbide powder, a matrix filler, and a binder resin are mixed to obtain a mixed raw material. In the molding step, the mixed raw material is fed into a mold, heated and pressurized to obtain a molded body. In the heat treatment step, the molded body is heat-treated to obtain a fired body. In the infiltration step, metallic silicon or a silicon alloy is melted and infiltrated into the fired body. In the reactive sintering step, the metallic silicon or a silicon alloy infiltrated into the fired body is reacted with the matrix filler and carbon to produce silicon carbide and to sinter the boron carbide powder. The matrix filler is carbon milled fiber. The carbon milled fiber does not remain in the sintered body in the reactive sintering step.SELECTED DRAWING: Figure 3
【課題】比弾性率が炭化ケイ素よりも高く、複雑な形状の成形を実現することができる複合セラミックス材料の製造方法を得ること。【解決手段】複合セラミックス材料の製造方法は、混合工程、成形工程、熱処理工程、溶浸工程および反応焼結工程を含む。混合工程は、炭化ホウ素粉末とマトリックス充填剤とバインダ樹脂とを混合し、混合原料を得る。成形工程は、成形型に混合原料を投入し、加熱および加圧して成形体を得る。熱処理工程は、成形体を加熱処理し、焼成体を得る。溶浸工程は、金属シリコンまたはシリコン合金を溶融させて焼成体に溶浸させる。反応焼結工程は、焼成体に溶浸した金属シリコンまたはシリコン合金をマトリックス充填剤およびカーボンと反応させて炭化ケイ素を生成させ、炭化ホウ素粉末を焼結させる。マトリックス充填剤は、カーボンミルドファイバである。反応焼結工程では、焼結体にはカーボンミルドファイバが残らない。【選択図】図3 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2024015754A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2024015754A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2024015754A3</originalsourceid><addsrcrecordid>eNrjZND1dQ3x8HdR8HdTCAjydwl19vRzV3B2DXL09XRW8HUMCfKMUHD29w3wD_YMcQ3mYWBNS8wpTuWF0twMSm6uIc4euqkF-fGpxQWJyal5qSXxXgFGBkYmBoam5qYmjsZEKQIAChIl9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD OF PRODUCING CERAMIC MATRIX COMPOSITES</title><source>esp@cenet</source><creator>KUME MASASANE</creator><creatorcontrib>KUME MASASANE</creatorcontrib><description>To provide ceramic matrix composites that have a higher specific modulus relative to silicon carbide and enable the molding of an article of a complex shape.SOLUTION: A method of producing ceramic matrix composites includes a mixing step, a molding step, a heat treatment step, an infiltration step, and a reactive sintering step. In the mixing step, boron carbide powder, a matrix filler, and a binder resin are mixed to obtain a mixed raw material. In the molding step, the mixed raw material is fed into a mold, heated and pressurized to obtain a molded body. In the heat treatment step, the molded body is heat-treated to obtain a fired body. In the infiltration step, metallic silicon or a silicon alloy is melted and infiltrated into the fired body. In the reactive sintering step, the metallic silicon or a silicon alloy infiltrated into the fired body is reacted with the matrix filler and carbon to produce silicon carbide and to sinter the boron carbide powder. The matrix filler is carbon milled fiber. The carbon milled fiber does not remain in the sintered body in the reactive sintering step.SELECTED DRAWING: Figure 3
【課題】比弾性率が炭化ケイ素よりも高く、複雑な形状の成形を実現することができる複合セラミックス材料の製造方法を得ること。【解決手段】複合セラミックス材料の製造方法は、混合工程、成形工程、熱処理工程、溶浸工程および反応焼結工程を含む。混合工程は、炭化ホウ素粉末とマトリックス充填剤とバインダ樹脂とを混合し、混合原料を得る。成形工程は、成形型に混合原料を投入し、加熱および加圧して成形体を得る。熱処理工程は、成形体を加熱処理し、焼成体を得る。溶浸工程は、金属シリコンまたはシリコン合金を溶融させて焼成体に溶浸させる。反応焼結工程は、焼成体に溶浸した金属シリコンまたはシリコン合金をマトリックス充填剤およびカーボンと反応させて炭化ケイ素を生成させ、炭化ホウ素粉末を焼結させる。マトリックス充填剤は、カーボンミルドファイバである。反応焼結工程では、焼結体にはカーボンミルドファイバが残らない。【選択図】図3</description><language>eng ; jpn</language><subject>ARTIFICIAL STONE ; CEMENTS ; CERAMICS ; CHEMISTRY ; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS ; CONCRETE ; LIME, MAGNESIA ; METALLURGY ; REFRACTORIES ; SLAG ; TREATMENT OF NATURAL STONE</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240206&DB=EPODOC&CC=JP&NR=2024015754A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240206&DB=EPODOC&CC=JP&NR=2024015754A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KUME MASASANE</creatorcontrib><title>METHOD OF PRODUCING CERAMIC MATRIX COMPOSITES</title><description>To provide ceramic matrix composites that have a higher specific modulus relative to silicon carbide and enable the molding of an article of a complex shape.SOLUTION: A method of producing ceramic matrix composites includes a mixing step, a molding step, a heat treatment step, an infiltration step, and a reactive sintering step. In the mixing step, boron carbide powder, a matrix filler, and a binder resin are mixed to obtain a mixed raw material. In the molding step, the mixed raw material is fed into a mold, heated and pressurized to obtain a molded body. In the heat treatment step, the molded body is heat-treated to obtain a fired body. In the infiltration step, metallic silicon or a silicon alloy is melted and infiltrated into the fired body. In the reactive sintering step, the metallic silicon or a silicon alloy infiltrated into the fired body is reacted with the matrix filler and carbon to produce silicon carbide and to sinter the boron carbide powder. The matrix filler is carbon milled fiber. The carbon milled fiber does not remain in the sintered body in the reactive sintering step.SELECTED DRAWING: Figure 3
【課題】比弾性率が炭化ケイ素よりも高く、複雑な形状の成形を実現することができる複合セラミックス材料の製造方法を得ること。【解決手段】複合セラミックス材料の製造方法は、混合工程、成形工程、熱処理工程、溶浸工程および反応焼結工程を含む。混合工程は、炭化ホウ素粉末とマトリックス充填剤とバインダ樹脂とを混合し、混合原料を得る。成形工程は、成形型に混合原料を投入し、加熱および加圧して成形体を得る。熱処理工程は、成形体を加熱処理し、焼成体を得る。溶浸工程は、金属シリコンまたはシリコン合金を溶融させて焼成体に溶浸させる。反応焼結工程は、焼成体に溶浸した金属シリコンまたはシリコン合金をマトリックス充填剤およびカーボンと反応させて炭化ケイ素を生成させ、炭化ホウ素粉末を焼結させる。マトリックス充填剤は、カーボンミルドファイバである。反応焼結工程では、焼結体にはカーボンミルドファイバが残らない。【選択図】図3</description><subject>ARTIFICIAL STONE</subject><subject>CEMENTS</subject><subject>CERAMICS</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</subject><subject>CONCRETE</subject><subject>LIME, MAGNESIA</subject><subject>METALLURGY</subject><subject>REFRACTORIES</subject><subject>SLAG</subject><subject>TREATMENT OF NATURAL STONE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND1dQ3x8HdR8HdTCAjydwl19vRzV3B2DXL09XRW8HUMCfKMUHD29w3wD_YMcQ3mYWBNS8wpTuWF0twMSm6uIc4euqkF-fGpxQWJyal5qSXxXgFGBkYmBoam5qYmjsZEKQIAChIl9A</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>KUME MASASANE</creator><scope>EVB</scope></search><sort><creationdate>20240206</creationdate><title>METHOD OF PRODUCING CERAMIC MATRIX COMPOSITES</title><author>KUME MASASANE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2024015754A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2024</creationdate><topic>ARTIFICIAL STONE</topic><topic>CEMENTS</topic><topic>CERAMICS</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</topic><topic>CONCRETE</topic><topic>LIME, MAGNESIA</topic><topic>METALLURGY</topic><topic>REFRACTORIES</topic><topic>SLAG</topic><topic>TREATMENT OF NATURAL STONE</topic><toplevel>online_resources</toplevel><creatorcontrib>KUME MASASANE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KUME MASASANE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD OF PRODUCING CERAMIC MATRIX COMPOSITES</title><date>2024-02-06</date><risdate>2024</risdate><abstract>To provide ceramic matrix composites that have a higher specific modulus relative to silicon carbide and enable the molding of an article of a complex shape.SOLUTION: A method of producing ceramic matrix composites includes a mixing step, a molding step, a heat treatment step, an infiltration step, and a reactive sintering step. In the mixing step, boron carbide powder, a matrix filler, and a binder resin are mixed to obtain a mixed raw material. In the molding step, the mixed raw material is fed into a mold, heated and pressurized to obtain a molded body. In the heat treatment step, the molded body is heat-treated to obtain a fired body. In the infiltration step, metallic silicon or a silicon alloy is melted and infiltrated into the fired body. In the reactive sintering step, the metallic silicon or a silicon alloy infiltrated into the fired body is reacted with the matrix filler and carbon to produce silicon carbide and to sinter the boron carbide powder. The matrix filler is carbon milled fiber. The carbon milled fiber does not remain in the sintered body in the reactive sintering step.SELECTED DRAWING: Figure 3
【課題】比弾性率が炭化ケイ素よりも高く、複雑な形状の成形を実現することができる複合セラミックス材料の製造方法を得ること。【解決手段】複合セラミックス材料の製造方法は、混合工程、成形工程、熱処理工程、溶浸工程および反応焼結工程を含む。混合工程は、炭化ホウ素粉末とマトリックス充填剤とバインダ樹脂とを混合し、混合原料を得る。成形工程は、成形型に混合原料を投入し、加熱および加圧して成形体を得る。熱処理工程は、成形体を加熱処理し、焼成体を得る。溶浸工程は、金属シリコンまたはシリコン合金を溶融させて焼成体に溶浸させる。反応焼結工程は、焼成体に溶浸した金属シリコンまたはシリコン合金をマトリックス充填剤およびカーボンと反応させて炭化ケイ素を生成させ、炭化ホウ素粉末を焼結させる。マトリックス充填剤は、カーボンミルドファイバである。反応焼結工程では、焼結体にはカーボンミルドファイバが残らない。【選択図】図3</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; jpn |
recordid | cdi_epo_espacenet_JP2024015754A |
source | esp@cenet |
subjects | ARTIFICIAL STONE CEMENTS CERAMICS CHEMISTRY COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS CONCRETE LIME, MAGNESIA METALLURGY REFRACTORIES SLAG TREATMENT OF NATURAL STONE |
title | METHOD OF PRODUCING CERAMIC MATRIX COMPOSITES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KUME%20MASASANE&rft.date=2024-02-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2024015754A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |