OCULAR FUNDUS IMAGE PROCESSING DEVICE AND OCULAR FUNDUS IMAGE PROCESSING PROGRAM
To provide on ocular fundus image processing device and an ocular fundus image processing program capable of more appropriately presenting, to a user, a degree of deviation when a site captured in an ocular fundus image is identified by a mathematical model.SOLUTION: In an image acquisition step, a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KUMAGAI YOSHINORI SHIBA RYOSUKE KANO TETSUYA SATAKE NORIMASA |
description | To provide on ocular fundus image processing device and an ocular fundus image processing program capable of more appropriately presenting, to a user, a degree of deviation when a site captured in an ocular fundus image is identified by a mathematical model.SOLUTION: In an image acquisition step, a control part acquires a three-dimensional image of the ocular fundus captured by an ocular fundus image capturing device. In a deviation degree acquisition step, the control part acquires a plurality of probability distributions for identifying each of a plurality of sites in an ocular fundus tissue captured in the three-dimensional image by inputting the three-dimensional image to a mathematical model trained by a machine learning algorithm, and acquires a deviation degree of the acquired probability distribution for the probability distribution when each of the plurality of sites is accurately identified. In a selection display step, the control part causes a display part to selectively display a map indicating a two-dimensional distribution of part of the plurality of acquired deviation degrees.SELECTED DRAWING: Figure 11
【課題】眼底画像に写る部位が数学モデルによって識別される際の乖離度を、より適切にユーザに提示することが可能な眼底画像処理装置および眼底画像処理プログラムを提供する。【解決手段】画像取得ステップでは、制御部は、眼底画像撮影装置によって撮影された眼底の三次元画像を取得する。乖離度取得ステップでは、制御部は、機械学習アルゴリズムによって訓練された数学モデルに三次元画像を入力することで、三次元画像に写る眼底組織における複数の部位の各々を識別するための複数の確率分布を取得し、複数の部位の各々が正確に識別される場合の確率分布に対する、取得された確率分布の乖離度を取得する。選択表示ステップでは、制御部は、取得された複数の乖離度のうち、一部の乖離度の二次元分布を示すマップを、選択的に表示部に表示させる。【選択図】図11 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_JP2023149742A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JP2023149742A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_JP2023149742A3</originalsourceid><addsrcrecordid>eNrjZAjwdw71cQxScAv1cwkNVvD0dXR3VQgI8nd2DQ729HNXcHEN83R2VXD0c1EgoBLIdA9y9OVhYE1LzClO5YXS3AxKbq4hzh66qQX58anFBYnJqXmpJfFeAUYGRsaGJpbmJkaOxkQpAgDNOi-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OCULAR FUNDUS IMAGE PROCESSING DEVICE AND OCULAR FUNDUS IMAGE PROCESSING PROGRAM</title><source>esp@cenet</source><creator>KUMAGAI YOSHINORI ; SHIBA RYOSUKE ; KANO TETSUYA ; SATAKE NORIMASA</creator><creatorcontrib>KUMAGAI YOSHINORI ; SHIBA RYOSUKE ; KANO TETSUYA ; SATAKE NORIMASA</creatorcontrib><description>To provide on ocular fundus image processing device and an ocular fundus image processing program capable of more appropriately presenting, to a user, a degree of deviation when a site captured in an ocular fundus image is identified by a mathematical model.SOLUTION: In an image acquisition step, a control part acquires a three-dimensional image of the ocular fundus captured by an ocular fundus image capturing device. In a deviation degree acquisition step, the control part acquires a plurality of probability distributions for identifying each of a plurality of sites in an ocular fundus tissue captured in the three-dimensional image by inputting the three-dimensional image to a mathematical model trained by a machine learning algorithm, and acquires a deviation degree of the acquired probability distribution for the probability distribution when each of the plurality of sites is accurately identified. In a selection display step, the control part causes a display part to selectively display a map indicating a two-dimensional distribution of part of the plurality of acquired deviation degrees.SELECTED DRAWING: Figure 11
【課題】眼底画像に写る部位が数学モデルによって識別される際の乖離度を、より適切にユーザに提示することが可能な眼底画像処理装置および眼底画像処理プログラムを提供する。【解決手段】画像取得ステップでは、制御部は、眼底画像撮影装置によって撮影された眼底の三次元画像を取得する。乖離度取得ステップでは、制御部は、機械学習アルゴリズムによって訓練された数学モデルに三次元画像を入力することで、三次元画像に写る眼底組織における複数の部位の各々を識別するための複数の確率分布を取得し、複数の部位の各々が正確に識別される場合の確率分布に対する、取得された確率分布の乖離度を取得する。選択表示ステップでは、制御部は、取得された複数の乖離度のうち、一部の乖離度の二次元分布を示すマップを、選択的に表示部に表示させる。【選択図】図11</description><language>eng ; jpn</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231013&DB=EPODOC&CC=JP&NR=2023149742A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231013&DB=EPODOC&CC=JP&NR=2023149742A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KUMAGAI YOSHINORI</creatorcontrib><creatorcontrib>SHIBA RYOSUKE</creatorcontrib><creatorcontrib>KANO TETSUYA</creatorcontrib><creatorcontrib>SATAKE NORIMASA</creatorcontrib><title>OCULAR FUNDUS IMAGE PROCESSING DEVICE AND OCULAR FUNDUS IMAGE PROCESSING PROGRAM</title><description>To provide on ocular fundus image processing device and an ocular fundus image processing program capable of more appropriately presenting, to a user, a degree of deviation when a site captured in an ocular fundus image is identified by a mathematical model.SOLUTION: In an image acquisition step, a control part acquires a three-dimensional image of the ocular fundus captured by an ocular fundus image capturing device. In a deviation degree acquisition step, the control part acquires a plurality of probability distributions for identifying each of a plurality of sites in an ocular fundus tissue captured in the three-dimensional image by inputting the three-dimensional image to a mathematical model trained by a machine learning algorithm, and acquires a deviation degree of the acquired probability distribution for the probability distribution when each of the plurality of sites is accurately identified. In a selection display step, the control part causes a display part to selectively display a map indicating a two-dimensional distribution of part of the plurality of acquired deviation degrees.SELECTED DRAWING: Figure 11
【課題】眼底画像に写る部位が数学モデルによって識別される際の乖離度を、より適切にユーザに提示することが可能な眼底画像処理装置および眼底画像処理プログラムを提供する。【解決手段】画像取得ステップでは、制御部は、眼底画像撮影装置によって撮影された眼底の三次元画像を取得する。乖離度取得ステップでは、制御部は、機械学習アルゴリズムによって訓練された数学モデルに三次元画像を入力することで、三次元画像に写る眼底組織における複数の部位の各々を識別するための複数の確率分布を取得し、複数の部位の各々が正確に識別される場合の確率分布に対する、取得された確率分布の乖離度を取得する。選択表示ステップでは、制御部は、取得された複数の乖離度のうち、一部の乖離度の二次元分布を示すマップを、選択的に表示部に表示させる。【選択図】図11</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwdw71cQxScAv1cwkNVvD0dXR3VQgI8nd2DQ729HNXcHEN83R2VXD0c1EgoBLIdA9y9OVhYE1LzClO5YXS3AxKbq4hzh66qQX58anFBYnJqXmpJfFeAUYGRsaGJpbmJkaOxkQpAgDNOi-A</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>KUMAGAI YOSHINORI</creator><creator>SHIBA RYOSUKE</creator><creator>KANO TETSUYA</creator><creator>SATAKE NORIMASA</creator><scope>EVB</scope></search><sort><creationdate>20231013</creationdate><title>OCULAR FUNDUS IMAGE PROCESSING DEVICE AND OCULAR FUNDUS IMAGE PROCESSING PROGRAM</title><author>KUMAGAI YOSHINORI ; SHIBA RYOSUKE ; KANO TETSUYA ; SATAKE NORIMASA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_JP2023149742A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; jpn</language><creationdate>2023</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>KUMAGAI YOSHINORI</creatorcontrib><creatorcontrib>SHIBA RYOSUKE</creatorcontrib><creatorcontrib>KANO TETSUYA</creatorcontrib><creatorcontrib>SATAKE NORIMASA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KUMAGAI YOSHINORI</au><au>SHIBA RYOSUKE</au><au>KANO TETSUYA</au><au>SATAKE NORIMASA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OCULAR FUNDUS IMAGE PROCESSING DEVICE AND OCULAR FUNDUS IMAGE PROCESSING PROGRAM</title><date>2023-10-13</date><risdate>2023</risdate><abstract>To provide on ocular fundus image processing device and an ocular fundus image processing program capable of more appropriately presenting, to a user, a degree of deviation when a site captured in an ocular fundus image is identified by a mathematical model.SOLUTION: In an image acquisition step, a control part acquires a three-dimensional image of the ocular fundus captured by an ocular fundus image capturing device. In a deviation degree acquisition step, the control part acquires a plurality of probability distributions for identifying each of a plurality of sites in an ocular fundus tissue captured in the three-dimensional image by inputting the three-dimensional image to a mathematical model trained by a machine learning algorithm, and acquires a deviation degree of the acquired probability distribution for the probability distribution when each of the plurality of sites is accurately identified. In a selection display step, the control part causes a display part to selectively display a map indicating a two-dimensional distribution of part of the plurality of acquired deviation degrees.SELECTED DRAWING: Figure 11
【課題】眼底画像に写る部位が数学モデルによって識別される際の乖離度を、より適切にユーザに提示することが可能な眼底画像処理装置および眼底画像処理プログラムを提供する。【解決手段】画像取得ステップでは、制御部は、眼底画像撮影装置によって撮影された眼底の三次元画像を取得する。乖離度取得ステップでは、制御部は、機械学習アルゴリズムによって訓練された数学モデルに三次元画像を入力することで、三次元画像に写る眼底組織における複数の部位の各々を識別するための複数の確率分布を取得し、複数の部位の各々が正確に識別される場合の確率分布に対する、取得された確率分布の乖離度を取得する。選択表示ステップでは、制御部は、取得された複数の乖離度のうち、一部の乖離度の二次元分布を示すマップを、選択的に表示部に表示させる。【選択図】図11</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; jpn |
recordid | cdi_epo_espacenet_JP2023149742A |
source | esp@cenet |
subjects | DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE SURGERY |
title | OCULAR FUNDUS IMAGE PROCESSING DEVICE AND OCULAR FUNDUS IMAGE PROCESSING PROGRAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KUMAGAI%20YOSHINORI&rft.date=2023-10-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EJP2023149742A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |